Теорема Карпа-Липтона
Версия от 22:26, 2 июня 2010; 192.168.0.2 (обсуждение)
Формулировка
Теорема Карпа-Липтона
то
Доказательство
Пусть есть логические схемы для
(любой задаче из NP).Например зафиксируем любую из NP например пусть сат разрешает логическими схемами , сат который поддерживается с одним битом разрешается логической схемой с1 сат с двумя переменными логической схемой с2...Что значит разрешается? Это значит что логическая схема, в инпуте которой который каким то логичным образом закодирована формула, а на выходе логичным образом в вмде 0 и один закодировано есть ли доказательство(разложение) или нет. И причем размер этой логической схемы не больше чем какой то полином от n. Но мы не утверждаем, что можем как то конструктивно их построить. Если бы мы могли за полином их построить, то это бы означало, что сат2=п2, что P=NP. Итак, что это означает, рассмотрим, это означает на самом деле что для любого n (зафиксируем n)Это означает что для фиксированного
такая логическая схема , что.
Рассмотрим язык
. Это означает, что Что такое существует z что пси от х игрик z? Обозначим пары <x,y>, для которых такой z существует как какой нибудь язык L1 Рассмотрим . Заметим что по определению Итого L это множество слов Нужно доказать чтоЧто такое <x,y> \in L1 ? Если
по карпу с помощью , т.е.Что такое f(<x,y>)\in SAT ?
- это значит, что для некоторого набора булевых(логических) схем, выполнимость всего этого набора, если предположить, что набор этих схем нам известен то получится что где n- длина входа <x,y> Нам надо откуда то взять этот набор. Мы можем его угадать используя квантор существует снаружи. Cn он существует по предположению что NP входит в P/poly т.е.Что такое Cn Решает SAT? Нам разрешается использовать только квантор для любого.
решает если
кодируетсимволов, разрешимых логической схемой . Размер .
Это означает что для фиксированного
такая логическая схема , что.
Рассмотрим язык
. Это означает, чтоРассмотрим
Но надо откуда-то взять этот набор. Можно его угадать, используя квантор существует. Добавим его.
Так как то
Что означает
решает ? Нужно переписать с квантором для любого.
Воспользуемся самосведением :
Внутри будем проверять используемый набор
Если
решает то все хорошо, если нет то зафиксируем формулу на которой не решает. Если выдаст 0 а должна выдать 1 то первую не удолветворяет, если наоборот то обе не удовлетворяет.
Получаем что
Теорема доказана