Матричное представление перестановок
Определение
Определение: |
Матрица перестановки — квадратная бинарная матрица, в каждой строке и в каждом столбце которой находится лишь одна единица. |
Определение: |
Если матрица перестановок | получена из единичной матрицы перестановкой местами двух строк (или двух столбцов), то такая матрица называется элементарной матрицей перестановок.
Каждая матрица перестановки размера является матричным представлением перестановки порядка .
Пусть дана перестановка
порядка :Соответствующей матрицей перестановки является матрица
вида:- , где — двоичный вектор длины , -й элемент которого равен единице, а остальные равны нулю.
Пример
Перестановка:
Соответствующая матрица:
Свойства
Утверждение: |
Для любых двух перестановок их матрицы обладают свойством:
|
Доказательство: Рассмотрим эта сумма может быть равна нулю или единице, причем единице в том случае, если в - той строчке на - том столбце матрицы и в - той строчке на - том столбце матрицы стоят единицы. значит, что в перестановке на - том месте стоит элемент , и означает что в перестановке на - том месте стоит элемент , а означает что в перестановке, которой соответствует эта матрица, так же на - том месте стоит элемент . Но также известно, что если умножить перестановку , где на - том месте стоит элемент , на перестановку , где на - том месте стоит элемент , то в полученной перестановке на - том месте будет стоять элемент . |
// разработка
- Для любой матрицы перестановок существует обратная:
- , где - транспонированная матрица
- Для любой матрицы перестановок
- , где - единичная матрица
справедливо:
- Произведение матриц перестановок есть матрица перестановок
- Матрица перестановок -го порядка может быть представлена в виде произведения элементарных матриц перестановок
- Квадрат элементарной матрицы перестановок есть единичная матрица
- Умножение произвольной матрицы на перестановочную соответственно меняет местами её столбцы.
- Умножение перестановочной матрицы на произвольную меняет местами строки в .
Применение
Благодаря последним свойствам, матрицам перестановок нашлось применение в линейной алгебре:
пусть задана матрица перестановки
, которая соответствует перестановке , и матрица ,тогда перемножив получим:
- ,
видно, что вторая и третья строки поменялись местами;
- ,
видно, что второй и третий столбец поменялись местами.