Функциональный анализ
Здесь я постараюсь написать теоретический минимум по второй части курса функционального анализа. Если вы читаете это, самоуничтожьтесь.
В прошлых сериях:
- Теорема Рисса — Фреше: Для любого непрерывного линейного функционала на Гильбертовом пространстве существует единственный вектор такой, что для любого . При этом норма линейного функционала совпадает с нормой вектора :
. Теорема также означает, что пространство всех линейных ограниченных функционалов над изоморофно пространству .
1.
и его ограниченность.2. Ортогональные дополнения Е и Е*.
3. Ортогональное дополнение R(A).
4. Ортогональное дополнение R(A*).
5. Арифметика компактных операторов.
6. О компактности А*, сепарабельность R(A).
7. Базис Шаудера, лемма о координатном пространстве.
8. Почти конечномерность компактного оператора.
9. О размерности Ker(I-A) компактного А.
10. Условие замкнутости R(A) на языке решений операторного уравнения.
11. О замкнутости R(I-A) компактного А.
12. Лемма о Ker(I-A)*n компактного А.
13. Об условии справедливости равенства R(I-A)=Е.
14. Альтернатива Фредгольма-Шаудера.
15. О спектре компактного оператора.
16. О вещественности спектра ограниченного самосопряженного оператора.
17. О характеризации спектра и резольвентного множества ограниченного самосопряженного оператора.
18. О числах m- и m+.
19. Спектральный радиус ограниченного самосопряженного оператора.
20. Теорема Гильберта-Шмидта.
21. О диагонализации компактного самосопряженного оператора и разложении его резольвенты.
22. Теорема Банаха о сжимающем отображении.
23. Дифференциал Фреше.
24. Неравенство Лагранжа.
25. Локальная теорема о неявном отображении.
26. Теорема о локальной обратимости отображения.
27. Локальная теорема о простой итерации
28. Локальная теорема о методе Ньютона-Канторовича.
29. О проекторах Шаудера.
30. Теорема Шаудера о неподвижной точке.