Мера Лебега в R^n
TODO: ВАКАНСИЯ: ВНИМАТЕЛЬНЫЙ ЧИТАТЕЛЬ. НУЖЕН, ЧТОБЫ ОЗНАКОМИТЬСЯ С ЭТИМ ТЕКСТОМ И ИСПРАВИТЬ КОСЯКИ
Последняя теорема показывает, что
— мера на .Применим к объёму ячеек процесс Каратеодори. В результате
будет распространено на -алгебру множеств .
Определение: |
Полученная мера | — -мерная мера Лебега (можно просто ).
Определение: |
Множества | — измеримые по Лебегу.
Цель этого параграфа — устрановить структуру множества, измеримого по Лебегу. Пойдём от простого к сложному, базируясь на общем критерии -измеримости и на том, что — -алгебра.
обозначим за
Тогда
— одноэлементное множество. Так как каждая ячейка измерима по Лебегу, — -алгебра, то получаем, что любое одноэлементное множество(точка) измеримо по Лебегу.
По монотонности меры,
Значит,
. Итак, мера точки равна нулю.— не более, чем счётное множество точек. Тогда
Значит, любое счётное множество точек измеримо и нульмерно.
Возьмём
, , — все рациональные числа на . — счётное, всюду плотное. Тогда , а . То есть для иррациональных чисел мера Лебега — 1. Это, в некотором смысле, парадоксальный результат, потому что искусственных объектов, которые мы определили в начале всего курса матанализа, оказалось ужасно, невероятно, невообразимо много по сравнению с познаваемыми нами рациональными числами.Утверждение: |
Бог есть. |
К сожалению, человечество может работать лишь с натуральными и рациональными числами. Сути же иррациональных чисел им не понять. Однако, множество рациональных чисел нульмерно. Но | . Ввиду своей ненульмерности, иррациональные числа неподвластны человеку. Значит,
Если взять произвольный параллелепипед в
, то, за счет непрерывности обьема, как функции точек параллелепипеда, мы можем строить и ячейку в нем и ячейку, включающую его (причем объем ячеек отличается на ). Значит, параллелепипед тоже измерим. Рассмотрим открытое множество в . Оно - объединение открытых шаров, или множество, которое вместе с каждой точкой содержит и открытый шар с центром в этой точке.Утверждение: |
Открытое множество в измеримо по Лебегу. |
Множество точек с рациональными координатами всюду плотно. Если рассмотреть совокупность открытых шаров с центром в рациональных точках и рациональных радиусов, то множество таких шаров будет счетно. Вместо шаров можно использовать открытые параллелепипеды, которые, как известно, измеримы. Если мы возьмем любую точку, то она будет содержаться во множестве вместе с некоторым параллелеипипедом. Далее, эту точку можно приблизить рациональными координатами сколь угодно точно; для каждого приближения можно построить параллеллепипед с этой точкой, содержащийся в уже построенном параллелепипеде. Значит, открытое множество можно представить, как счетное объединение открытых параллелепипедов, содержащихся в нем, поэтому, оно измеримо. |
Класс измеримых множеств есть
-алгебра. Замкнутое множество есть дополнение к открытому, значит, оно тоже измеримо.Логика рассуждений во многих последующих теоремах будет такова: из множеств, измеримость которых ясна, путем счетного числа операций пересечения и объединения пошагово стоим интересующий нас объект.
TODO: Далее следует теорема о лямбда со звездочкой. жуткое доказательство.Далее идт ряд ВАЖНЫХ следствий