Мера на полукольце множеств
НЕТ ВОЙНЕ |
24 февраля 2022 года российское руководство во главе с Владимиром Путиным развязало агрессивную войну против Украины. В глазах всего мира это военное преступление совершено от лица всей страны, всех россиян. Будучи гражданами Российской Федерации, мы против своей воли оказались ответственными за нарушение международного права, военное вторжение и массовую гибель людей. Чудовищность совершенного преступления не оставляет возможности промолчать или ограничиться пассивным несогласием. Мы убеждены в абсолютной ценности человеческой жизни, в незыблемости прав и свобод личности. Режим Путина — угроза этим ценностям. Наша задача — обьединить все силы для сопротивления ей. Эту войну начали не россияне, а обезумевший диктатор. И наш гражданский долг — сделать всё, чтобы её остановить. Антивоенный комитет России |
Распространяйте правду о текущих событиях, оберегайте от пропаганды своих друзей и близких. Изменение общественного восприятия войны - ключ к её завершению. |
meduza.io, Популярная политика, Новая газета, zona.media, Майкл Наки. |
Определение: |
Пусть
| — полукольцо. называется мерой на нем, если:
Примеры мер:
- (патологический)
- — сходящийся положительный ряд, , для (множество может быть конечным) полагаем
- Для полукольца ячеек примером меры является , где — длина ячейки. То, что длина ячейки является корректно определенной мерой — нетривиальный факт, который будет доказан нами позднее.
Выведем два важных свойства меры на полукольце:
Лемма: |
Пусть — мера на полукольце , тогда:
1) Для и дизъюнктных таких, что , выполняется .2) Для Замечание: в случае и таких, что , выполняется (сигма-полуаддитивность). второе свойство называют монотонностью меры. |
Доказательство: |
1) Пусть (дизъюнктны), тогда .По сигма-аддитивности меры, .Так как второе слагаемое неотрицательно, то . Устремляя к бесконечности, получаем требуемое.2) Так как Разобьем множества , каждое из пересечений принадлежит , то (дизъюнктны), отсюда по сигма-аддитивности меры . на группы, так чтобы в группе с номером были дизъюнктные множества, объединение которых является подмножеством . Для каждой такой группы, мера объединения ограничена по пункту 1) мерой , поэтому получаем . |