Метод четырёх русских для умножения матриц
Дано две квадратных матрицы и , состоящие из нулей и единиц. Нужно найти их произведение. При этом, все операции выполняются по модулю .
Содержание
Простое решение
Если мы будем считать произведение матриц по определению(), то сложность работы алгоритма составит — каждый из элементов результирующей матрицы вычисляется за время, пропорциональное .
Сейчас будет показано, как немного уменьшить это время.
Сжатие матриц
Для выполнения сжатия матриц выполним следующий предподсчёт : для всех возможных пар двоичных векторов длины подсчитаем и запомним их скалярное произведение по модулю .
Возьмём первую матрицу. разделим каждую её строку на куски размера . Для каждого куска определим номер двоичного вектора, который соответствует числам, находящимся на этом куске. Если кусок получился неравным по длине (последний кусок строки), то будем считать, что в конце в нём идут не влияющие на умножение нули. Получим матрицу .
Аналогично поступим с матрицей , вместо строк деля столбцы. Получим матрицу .
Теперь, если вместо произведения матриц и считать произведение новых матриц и , воспользовавшись посчитанными скалярными произведениями, то каждый элемент матрицы будет получаться уже за время, пропорциональное вместо , и время произведения матриц сократится с до .
Оценка сложности алгоритма и выбор k
Оценим асимптотику данного алгоритма.
- Предподсчёт скалярных произведений работает за .
- Создание матриц и —
- Перемножение полученных матриц —
Итого: .
Выбрав , получаем требуемую асимптотику
Пример работы алгоритма
Рассмотрим работу алгоритма на примере перемножения двух матриц и , где
,
, то предподсчитаем все скалярные произведения:
Для удобства каждому битовому вектору будет соответствовать десятичное число, т.е. , , , , тогда ниже приведена таблица, в которой записаны все искомые произведения:
Согласно соглашению относительно битовых векторов и соответствующих им десятичным числам получим новые матрицы и :
,
Перемножим эти матрицы по модулю два с использованием нашего предпосчета:
Матрица - искомая.
Литература
- Gregory V. Bard — Accelerating Cryptanalysis with the Method of Four Russians