Использование обхода в глубину для проверки связности
Алгоритм проверки наличия пути из s в t
Задача
Дан граф
и две вершины и . Необходимо проверить, существует ли путь из вершины в вершину по рёбрам графа .Алгоритм
Небольшая модификация алгоритма обхода в глубину. Смысл алгоритма заключается в том, чтобы запустить обход в глубину из вершины и проверять при каждом посещении вершины, не является ли она искомой вершиной . Так как в первый момент времени все пути в графе "белые", то если вершина и была достижима из , то по лемме о белых путях в какой-то момент времени мы зайдём в вершину , чтобы её покрасить. Время работы алгоритма .
Реализация
vector<bool> visited; //вектор для хранения информации о пройденных и не пройденных вершинах bool dfs(int u) { if (u == t) return true; visited[u] = true; //помечаем вершину как пройденную for (v таких, что (u, v) — ребро в G) //проходим по смежным с u вершинам if (!visited[v]) //проверяем, не находились ли мы ранее в выбранной вершине if (dfs(v)) return true; return false; } int main() { ... //задание графа G с количеством вершин n и вершин S и T. visited.assign(n, false); //в начале все вершины в графе не пройденные if (dfs(s)) std::out << "Путь из S в T существует"; else std::out << "Пути из S в T нет"; return 0; }
Алгоритм проверки связности графа G
Задача
Дан неориентированный граф . Необходимо проверить, является ли он связным.
Алгоритм
Заведём счётчик количества вершин которые мы ещё не посетили. В стандартной процедуре dfs() будем уменьшать счётчик на единицу при входе в процедуру. Запустимся от какой-то вершины нашего графа. Если в конце работы процедуры dfs() счётчик равен нулю, то мы побывали во всех вершинах графа, а следовательно он связен. Если счётчик отличен от нуля, то мы не побывали в какой-то вершине графа. Работает алгоритм за
.Реализация
vector<bool> visited; //вектор для хранения информации о пройденных и не пройденных вершинах int k = 0; void dfs(int u) { k--; visited[u] = true; //помечаем вершину как пройденную for (v таких, что (u, v) — ребро в G) //проходим по смежным с u вершинам if (!visited[v]) //проверяем, не находились ли мы ранее в выбранной вершине dfs(v); } int main() { ... //задание графа G с количеством вершин n и вершин S и T. visited.assign(n, false); //в начале все вершины в графе не пройденные k = n; for (int i = 0; i < n; i++) dfs(i); if (k == 0) std::out << "Граф связен"; //вывести, что граф связен else std::out << "Граф несвязен"; //вывести, что граф несвязен return 0; }