Материал из Викиконспекты
Связь периода и бордера
Теорема: |
Если у строки длины [math]n[/math] есть бордер длины [math]k[/math], то у нее есть период длины [math](n - k)[/math]. |
Доказательство: |
[math]\triangleright[/math] |
Напишем формально определения бордера длины [math]k[/math] строки [math]\alpha[/math]:
[math]\forall i = 1 \ldots k[/math], [math]\alpha [i] = \alpha[i + (n - k)][/math].
Сделаем замену [math]x = n - k[/math]:
[math]\forall i = 1 \ldots n - x[/math], [math]\alpha [i] = \alpha[i + x][/math].
Получили определение периода длины [math]x[/math]. Но [math]x = n - k[/math], значит у строки [math]\alpha[/math] есть период длины [math](n - k)[/math]. |
[math]\triangleleft[/math] |
Свойства периода
Теорема: |
Если у строки есть период длины [math]k[/math], то у нее есть период длины [math]|k \cdot x|[/math], где [math] x \in N[/math]. |
Доказательство: |
[math]\triangleright[/math] |
Пусть длина строки равна [math]n[/math].
Доказательство будем вести по индукции по числу [math]x[/math].
Для [math] x = 1 [/math] утверждение очевидно.
Пусть верно для [math]x = m[/math]. Докажем, что верно для [math]x = m + 1[/math].
Из определения периода имеем, что
[math]\forall i = 1 \ldots n - k[/math], [math]\alpha [i] = \alpha[i + k][/math], а из предположения индукции, что
[math]\forall i = 1 \ldots n - k[/math], [math]\alpha [i] = \alpha[i + m \cdot k][/math]
Значит получаем, что
[math]\forall i = 1 \ldots n - k[/math] [math]\alpha [i] = \alpha [i + m \cdot k] = \alpha[i + m \cdot k + k][/math], следовательно
[math]\forall i = 1 \ldots n - k[/math], [math]\alpha [i] = \alpha[i + (m + 1) \cdot k][/math].
Значит у строки есть период длины [math] |(m + 1) \cdot k|[/math].
Утверждение доказано. |
[math]\triangleleft[/math] |
Теорема: |
Если у строки есть периоды длины [math]p[/math] и [math]q[/math], то НОД[math](p, q)[/math] также является периодом этой строки. |
Доказательство: |
[math]\triangleright[/math] |
Пусть [math] p \gt q [/math], тогда
для [math]\forall i = 1 \ldots n - q[/math], [math]\alpha [i] = \alpha[i + p] = \alpha[i + q][/math].
Значит для [math]\forall i = 1 \ldots n - (p - q)[/math], [math]\alpha [i] = \alpha[i + (p - q)][/math]
Теперь, следуя алгоритму Евклида, если [math] q \gt = p - q [/math], получим [math]\alpha [i] = \alpha[i + (q - (p - q))][/math],
иначе [math]\alpha [i] = \alpha[i + (p - q) - q][/math].
Будем выполнять такие действия, пока не получим НОД[math](p, q)[/math]. Это будет выполнятся для [math]\forall i [/math]. Следовательно будет период длины НОД[math](p, q)[/math]. |
[math]\triangleleft[/math] |