Лемма о соотношении coNP и IP
Определение: |
имеет ровно удовлетворяющих наборов . |
Введём понятие арифметизации булевых формул. Пусть нам дана формула . Сделаем следующие преобразования и получим формулу :
- ;
- ;
- ;
- .
Заметим, что длина формулы при этом возрастёт не более, чем в константу раз.
Лемма (1): |
. |
Лемма (2): |
. |
Доказательство: |
Следует из леммы (1). |
Лемма (3): |
. |
Доказательство: |
Для доказательства леммы построим программы Verifier и Prover из определения класса .Сперва арифметизуем формулу . Пусть полученный полином имеет степень .По лемме (2) вместо условия , можно проверять условие .Приступим к описанию Verifier'а. Шаг 0 Запросим у Prover'а такое простое число знаем, , следовательно на эти операции у Verifier'а уйдёт полиномиальное от размера входа время. , что . Проверим простоту и условие (константу определим позднее). Как мыДалее будем проводить все вычисления модулю .Попросим Prover 'а прислать Verifier 'у формулу . Заметим, что размер формулы будет полином от длины входа Verifier 'а, так как полином от одной переменной степени не выше, чем , а значит его можно представить в виде .Проверим следующее утверждение: (здесь и далее под словом «проверим» будем подразумевать следующее: если утверждение верно, Verifier продолжает свою работу, иначе он прекращает свою работу и возвращет false).Шаг i Пусть . Отправим программе Prover.Пусть .Попросим Prover 'а прислать Verifier 'у формулу . Проверим следующее утверждение: .Шаг m Пусть . Отправим программе Prover.Попросим программу Prover прислать Verifier 'у значение .Проверим следующее утверждение: . А также сами подставим в и проверим правильность присланного значения .Возвращаем true. Докажем теперь, что построенный таким образом Verifier — корректный. Таким образом, нужно доказать:
|
Лемма (4): |
. |
Доказательство: |
Сведём язык к языку следующим образом: , где — количество различных переменных в формуле .Очевидно, что По лемме (3) . . Тогда . Так как , то . |