Из того, что класс [math]\mathrm{BPP}[/math] замкнут относительно дополнения и [math]\mathrm{co}\Sigma_2 = \Pi_2[/math], следует, что достаточно доказать включение [math]\mathrm{BPP} \subset \Sigma_2[/math].
[math]\mathrm{BPP}[/math] можно определить как множество таких языков [math]L[/math], что [math]x \in L \Leftrightarrow \exists[/math] «много» вероятностных лент [math]y: R(x,y)[/math]. [math]\Sigma_2[/math] определяется как множество [math]\{ L \bigm| x \in L \Leftrightarrow \exists y \forall z R(x, y, z)\}[/math]. Таким образом, необходимо уметь записывать «[math]\exists[/math] много» с помощью кванторов [math]\exists\forall[/math].
Рассмотрим язык [math]G = \{0, 1\}^t[/math] для некоторого [math]t[/math]. Определим операцию [math]\oplus[/math] над словами из этого языка как побитовое исключающее или.
Назовем [math]X[/math], содержащееся в [math]G[/math], [math]k[/math]-большим, если существует набор [math]\{g_i\}_{i=1}^{k}[/math] такой, что [math]\bigcup\limits_{i=1}^{k} g_i \oplus X = G[/math].
Если [math]|X| \lt \frac{2^t}{k}[/math], то [math]X[/math] является [math]k[/math]-маленьким. Найдем достаточное условие, при котором [math]X[/math] является [math]k[/math]-большим.
Воспользуемся утверждением, что если вероятность [math]P(x \in A) \gt 0[/math], то существует [math]x[/math] из [math]A[/math]. Для этого
выберем случайно набор [math]\{g_i\}_{i=1}^{k}[/math].
[math]P(\bigcup\limits_{i=1}^{k} g_i \oplus X \not = G) = P(\exists y \not \in \bigcup\limits_{i=1}^{k} g_i \oplus X) = P(\bigvee\limits_{i=1}^{2^t} y_i \not \in \bigcup\limits_{j=1}^{k} g_j \oplus X) \leqslant 2^t P(y \not \in \bigcup\limits_{i=1}^{k} g_i \oplus X) = 2^t P(\bigwedge\limits_{i=1}^{k} y \oplus g_i \not \in X) = 2^t \left(P(y \not \in X)\right)^k = 2^t \left(1 - \frac{|X|}{2^t}\right)^k[/math].
Если [math]2^t\left(1 - \frac{|X|}{2^t}\right)^k \lt 1[/math], то существует набор [math]\{g_i\}_{i=1}^{k}[/math], такой что [math]\bigcup\limits_{i=1}^{k} g_i \oplus X = G[/math], то есть [math]X[/math] [math]k[/math]-большое.
Рассмотрим язык [math]L \in \mathrm{BPP}[/math]. Существует вероятностная машина Тьюринга [math]M[/math], такая что [math]P(M(x) = [x \in L]) \geqslant 1 - \frac{1}{2^{p(n)}}[/math], где [math]p(n)[/math] некоторый полином, который будет определен позднее. Пусть [math]M[/math] использует [math]r(n)[/math] бит случайной ленты.
Зафиксируем [math]x[/math]. Возьмем [math]G = \{0, 1\}^{r(n)}[/math]. Рассмотрим множество [math]A_x = \{r \in G \bigm| M(x,r) = 1\}[/math]. Подберем теперь [math]p(n)[/math] и [math]k[/math] так, чтобы [math]x \in L \Leftrightarrow A_x[/math] [math]k[/math]-большое.
Если [math]x \in L[/math], то [math]P(A_x) = \frac{|A_x|}{2^{r(n)}} \geqslant 1 - \frac{1}{2^{p(n)}} \Rightarrow |A_x| \geqslant 2^{r(n)} \left( 1 - \frac{1}{2^{p(n)}} \right)[/math]. Потребуем [math]2^{r(n)} \left( 1 - \frac{|A_x|}{2^{r(n)}} \right)^k \leqslant 2^{r(n) - kp(n)} \lt 1[/math], чтобы [math]A_x[/math] было бы [math]k[/math]-большим.
Если [math]x \not \in L[/math], то [math]P(A_x) = \frac{|A_x|}{2^{r(n)}} \leqslant \frac{1}{2^{p(n)}} \Rightarrow |A_x| \leqslant 2^{r(n) - p(n)}[/math]. Потребуем [math]2^{r(n) - p(n)} \lt \frac{2^{r(n)}}{k}[/math], чтобы [math]A_x[/math] было бы [math]k[/math]-маленьким.
Выберем [math]p(n)[/math] так, чтобы [math]\frac{r(n)}{p(n)} \lt 2^{p(n)} - 2[/math] и [math]k = \lceil \frac{r(n)}{p(n)} \rceil + 1[/math]. Получаем [math]\frac{r(n)}{p(n)} \lt k \lt 2^{p(n)}[/math], то есть [math]x \in L \Leftrightarrow A_x[/math] [math]k[/math]-большое.
Таким образом, [math]x \in L \Leftrightarrow \exists \{g_i\}_{i=1}^{k} \forall y \bigvee\limits_{i=1}^{k} y \in g_i \oplus A_x[/math], то есть [math]x \in L \Leftrightarrow \exists \{g_i\}_{i=1}^{k} \forall y \bigvee\limits_{i=1}^{k} y \oplus g_i \in A_x[/math], то есть
[math]x \in L \Leftrightarrow \exists \{g_i\}_{i=1}^{k} \forall y \bigvee\limits_{i=1}^{k} M(x, y \oplus g_i)[/math],
а, значит, [math]L \in \Sigma_2[/math], [math]\mathrm{BPP} \subset \Sigma_2[/math] и [math]\mathrm{BPP} \subset \Sigma_2 \cap \Pi_2[/math], что и требовалось доказать. |