Дерево отрезков. Построение
Дерево отрезков — это структура данных, которая позволяет за асимптотику моноиде. Например, следующего вида: нахождение суммы (задача RSQ), минимума или максимума (задача RMQ) элементов массива в заданном отрезке ( , где и поступают на вход алгоритма)
реализовать любые операции, определяемые наПри этом дополнительно возможно изменение элементов массива: как изменение значения одного элемента, так и изменение элементов на целом подотрезке массива, например разрешается присвоить всем элементам какое-либо значение, либо прибавить ко всем элементам массива какое-либо число. Структура занимает памяти, а ее построение требует времени.
Структура
Структура представляет собой дерево, листьями которого являются элементы исходного массива. Другие вершины этого дерева имеют по 2 ребёнка и содержат сумму или минимум/максимум своих детей (в зависимости от поставленной задачи вершины могут содержать многие другие операции). Таким образом, корень содержит результат искомой функции от всего массива
, левый ребёнок корня содержит результат функции на , а правый, соответственно результат на . И так далее, продвигаясь вглубь дерева.Построение дерева
Пусть исходный массив состоит из элементов. Для удобства построения увеличим длину массива так, чтобы она равнялась ближайшей степени двойки, т.е. , где . Это сделано, для того чтобы не допустить обращение к несуществующим элементам массива при дальнейшем процессе построения. Пустые элементы необходимо заполнить нейтральными элементами моноида. Тогда для хранения дерева отрезков понадобится массив из элементов, поскольку в худшем случае количество вершин в дереве можно оценить суммой , где . Таким образом, структура занимает линейную память.Процесс построения дерева заключается в заполнении массива
. Заполним этот массив таким образом, чтобы -й элемент являлся бы значением функции (для каждой конкретной задачи своей) от элементов c номерами и , то есть родитель являлся значением функции своих сыновей. Один из вариантов — делать рекурсивно. Пусть у нас имеются исходный массив , а тае переменные и , обозначающие границы текущего полуинтервала. Запускаем процедуру построения от корня дерева отрезков ( , , ), а сама процедура построения, если её вызвали не от листа, вызывает себя от каждого из двух сыновей и суммирует вычисленные значения, а если её вызвали от листа — то просто записывает в себя значение этого элемента массива (Для этого у нас есть исходный массив ). Асимптотика построения дерева отрезков составит, таким образом, .Выделяют два основных способа построения дерева отрезков: построение снизу и построение сверху. При построении снизу алгоритм поднимается от листьев к корню (Просто начинаем заполнять элементы массива от большего индекса к меньшему, таким образом при заполнении элемента его дети и уже будут заполнены, и мы с легкостью посчитаем функцию от них), а при построении сверху спускается от корня к листьям. Особенные изменения появляются в реализации запросов к таким деревьям отрезков. Реализация построения сверху:
TreeBuild(a[], i, tl, tr) if (tl = tr) return; if (tr - tl = 1) t[i] = a[tl]; else tm = (tl + tr) / 2; //середина отрезка TreeBuild(a, 2*i+1, tl, tm); TreeBuild(a, 2*i+2, tm, tr); t[i] = f(t[2*i+1], t[2*i+2]);
Реализация построения снизу:
TreeBuild(a[]) for i = n-1..2*n-1 t[i] = a[i - n-1] for i = n-2..0 t[i] = f(t[2*i+1], t[2*i+2])
Ссылки
- Визуализатор дерева отрезков