Оценка сложности вычисления гиперобъема
Версия от 12:15, 20 июня 2012; Lperovskaya (обсуждение | вклад)
Утверждается, что точное вычисление значения гиперобъема #P-трудной задачей, однако допускает эффективную аппроксимацию, а именно может быть аппроксимировано за
множества из точек -мерного пространства является- полином от количества параметров,
- полином от количества решений,
- полином от качества аппроксимации.
#P-трудность задачи вычисления гиперобъема
Определение: |
задача #MON-CNF (Satisfability problem for monotone boolean formulas) --- задача вычисления количества удовлетворяющих подстановок для монотонной булевой формулы, записанной в КНФ где все дизъюнкты |
Теорема: |
Задача вычисления гиперобъема принадлежит классу #P трудных задач |
Доказательство: |
Суть доказательства состоит в сведении задачи #MON-CNF к задаче вычисления значения гиперобъема. Так как доказано [1] , что #MON-CNF является #P-трудной, то это докажет теорему. Количество удовлетворяющих подстановок функции меньше на количество удовлетворяющих подстановок ее отрицания . Для упрощения вычислений далее будем работать с .Для каждого конъюнкта построим соответствующий ему гиперкубгде . Рассмотрим теперь . Заметим, что так как все вершины гиперкубов лежат в точках с целочисленными координатами 0,1 или 2, то и можно разбить на гиперкубы вида , где (то есть на гиперкубики со сторонами 1 с координатами ближайшей к началу координат вершины 0 или 1).Более того, из-за целочисленности вершин , каждый из этих гиперкубиков лежит в хотя бы одном из
А значит из определения
удовлетворяет для некоторого удовлетворяет Заметим, что так как Таким образом произвели сведение, в значит задача вычисления гиперобъема принадлежит #P удовлетворяет |
Эффективная аппроксимация нахождения гиперобъема
Приведем псевдокод алгоритма для аппроксимации гиперобъема. В алгоритме, приведенном в [2] используются три оракула PointQuery, VolumeQuery и SampleQuery, каждый из которых ошибается с вероятностью и соответственно.
Примечания
- ↑ D. Roth. On the hardness of approximate reasoning. Artif. Intell., 82: 273–302, 1996, http://cogcomp.cs.illinois.edu/papers/hardJ.pdf
- ↑ Karl Bringmann, Tobias Friedrich, Approximating the volume of unions and intersections of high-dimensional geometric objects, ISAAC'2008, http://www.mpi-inf.mpg.de/~kbringma/paper/2008ISAAC_Volume.pdf