Теоретико-числовые функции
Эта статья находится в разработке!
Мультипликативность функции
Функция
- 1. Функция определена для всех целых положительных a и не обращается в 0 хотя бы при одном таком a
- 2. Для любых положительных взаимно простых и имеем
Функция Эйлера
Функция Эйлера
определяется для всех целых положительных a и представляет собою число чисел ряда , взаимно простых с a.Примеры:
, ,
, .
Свойства функции Эйлера
- 1. Пусть - каноническое разложение числа a, тогда
- 2. Из свойства 1, очевидно, следует, что при <tex> (a_1 \text{, } a_2 ) = 1 выполняется