Теоретико-числовые функции
Эта статья находится в разработке!
Содержание
Мультипликативность функции
Функция
- 1. Функция определена для всех целых положительных a и не обращается в 0 хотя бы при одном таком a
- 2. Для любых положительных взаимно простых и имеем
Функция Эйлера
Функция Эйлера
определяется для всех целых положительных a и представляет собою число чисел ряда , взаимно простых с a.Примеры:
, ,
, .
Свойства функции Эйлера
- 1. Пусть - каноническое разложение числа a, тогда
- 2. Из свойства 1, очевидно, следует, что при выполняется . То есть функция Эйлера является мультипликативной.
Количество делителей
Арифметическая функция
определяется как число положительных делителей натурального числа a:Если a и b взаимно просты, то каждый делитель произведения ab может быть единственным образом представлен в виде произведения делителей a и b, и обратно, каждое такое произведение является делителем ab. Отсюда следует, что функция мультипликативна:
Пусть
- каноническое разложение числа a, то в силу мультипликативностиНо положительными делителями числа
являются чисел .Значит,
Сумма делителей =
Функция
определяется как сумма делителей натурального числа a:Функция
мультипликативна по тем же соображениям, что иФункция Мёбиуса
Функция Мёбиуса
- , если a делится на квадрат, отличный от 1.
- , если a не делится на квадрат, где k - число простых делителей a.
Свойства
- 1. Функция Мёбиуса мультипликативна.
- 2. Сумма значений функции Мёбиуса по всем делителям целого числа n, не равного единице, равна нулю