Вычисление порядка элемента в группе

Материал из Викиконспекты
Перейти к: навигация, поиск
НЕТ ВОЙНЕ

24 февраля 2022 года российское руководство во главе с Владимиром Путиным развязало агрессивную войну против Украины. В глазах всего мира это военное преступление совершено от лица всей страны, всех россиян.

Будучи гражданами Российской Федерации, мы против своей воли оказались ответственными за нарушение международного права, военное вторжение и массовую гибель людей. Чудовищность совершенного преступления не оставляет возможности промолчать или ограничиться пассивным несогласием.

Мы убеждены в абсолютной ценности человеческой жизни, в незыблемости прав и свобод личности. Режим Путина — угроза этим ценностям. Наша задача — обьединить все силы для сопротивления ей.

Эту войну начали не россияне, а обезумевший диктатор. И наш гражданский долг — сделать всё, чтобы её остановить.

Антивоенный комитет России

Распространяйте правду о текущих событиях, оберегайте от пропаганды своих друзей и близких. Изменение общественного восприятия войны - ключ к её завершению.
meduza.io, Популярная политика, Новая газета, zona.media, Майкл Наки.

Постановка задачи

Пусть [math]G[/math]группа, [math]a \in G[/math]. Требуется найти порядок элемента [math]a[/math].

Решение

По следствию из теоремы Лагранжа порядок элемента является делителем порядка группы. Таким образом достаточно рассмотреть [math]a^n[/math], где [math]n \in X[/math], [math]X[/math] — делители порядка группы.

Алгоритм

  1. Найти все делители [math]|G|[/math] перебором от 1 до [math]\sqrt{|G|}[/math]
  2. Для каждого делителя [math]n[/math] проверить значение [math]a^n[/math]. Наименьший [math]n[/math], такой что [math]a^n = e[/math], является порядком элемента [math]a[/math] в группе.

Алгоритмическая сложность

Перебор от [math]1[/math] до [math]\sqrt{|G|}[/math] выполняется за [math]O(\sqrt{|G|})[/math]. Возведение [math]a[/math] в степень [math]n[/math] выполняется за [math]O(\log n)[/math]. Следовательно время выполнения [math]O(\sqrt{|G|} \cdot \log{|G|})[/math].