Обратный оператор

Материал из Викиконспекты
Перейти к: навигация, поиск
Определение:
Пусть [math]\mathcal{A}:X \rightarrow X[/math] — автоморфизм. Тогда [math]\mathcal{A}^{-1}: X \rightarrow X[/math] называется обратным оператором к [math]\mathcal{A}[/math], если [math]\mathcal{A} \cdot \mathcal{A}^{-1} = \mathcal{A}^{-1} \cdot \mathcal{A} = J[/math].


Теорема (Критерий существования [math]\mathcal{A}^{-1}[/math]):
Для [math]\mathcal {9} \mathcal{A}^{-1}[/math] нужно и достаточно, чтобы в некотором базисе [math]\left\{ e \right\}_{i = 1}^{n}\ det A \ne 0[/math]
Теорема (Критерий существования [math]\mathcal{A}^{-1}[/math]):
Для [math]\mathcal {9} \mathcal{A}^{-1}[/math] нужно и достаточно одного из двух условий:
  1. [math]Ker\mathcal{A} = \{0_{x}\}[/math]
  2. [math]Im\mathcal{A} = X[/math]

Ссылки

Источники

  • Анин конспект