Сокращённая и минимальная ДНФ

Материал из Викиконспекты
Перейти к: навигация, поиск

Сокращенная ДНФ

Запишем известную функцию <x,y,z> (медиана) в СДНФ: [math](x \wedge y \wedge z) \vee (x \wedge y \wedge \neg z) \vee (x \wedge \neg y \wedge z) \vee (\neg x \wedge y \wedge z)[/math]. Известно, что это выражение равносильно следующему: [math]((x \wedge y \wedge z) \vee (x \wedge y \wedge \neg z)) \vee ((x \wedge \neg y \wedge z) \vee (x \wedge y \wedge z)) \vee ((\neg x \wedge y \wedge z) \vee (x \wedge y \wedge z))[/math]. Вынесем в каждой скобке общий конъюнкт (например, в первой [math](x \wedge y \wedge z) \vee (x \wedge y \wedge \neg z)=(x \wedge y) \vee (z \wedge \neg z))[/math]. Т.к. [math]z \wedge \neg z = 0[/math], то такой конъюнкт не влияет на значение выражения, и его можно опустить. Получим в итоге формулу [math](x \wedge y) \vee (y \wedge z) \vee (x \wedge z)[/math].

Определение:
Сокращенная ДНФ: форма записи функции, обладающая следующими свойствами:

1. Никакие два слагаемых нельзя объединить по рассмотренному выше правилу.
2. Ни один из конъюнктов не является подмножеством другого (например, [math](x \wedge y)[/math] - подмножество [math](x \wedge y \wedge z)[/math]).

Функцию можно записать с помощью сокращенной ДНФ не единственным способом.

Минимальная ДНФ

Определение:
Минимальная ДНФ - та сокращенная ДНФ, в которой содержится минимальное количество переменных.

Каждая минимальная ДНФ является сокращенной, но не каждая сокращенная - минимальна.
Минимальная ДНФ представляет функцию в наиболее удобно для работы с ней виде.

См. также

Минимизация ДНФ с помощью покрытий гиперкуба и карт Карно