Алгоритмы на деревьях
Диаметр дерева - максимальная длина кратчайшего пути между любыми двумя вершинами. Алгоритм в этой статье находил диаметр в дереве,при чём очень простым алгоритмом.
Алгоритм: Возьмём любую вершину V и найдём расстояния до всех других вершин.
d = max{
, } dist( )Возьмём вершину
такую,что d[u] >= d[t] для любого t.Снова найдём расстояние до всех остальных вершин.Самое большое расстояние - диаметр дерева. Расстояние до остальных вершин удобно искать алгоритмом BFS.Реализация:
void diameter(graph g) { v = u = w = 0; bfs(v); // заполняет массив d[n] расстояниями до всех вершин. for(i = 0; i < n; i++) if (d[i] > d[u]) u = i; bfs(u); for(i = 0; i < n; i++) if (d[i] > d[w]) w = i; return d[w]; }
Обоснование корректности:
Будем пользоваться свойством,что в любом дереве >= 2 висячих вершин(степерь у них = 1)
Докажем вспомогательную лемму:
Искомое расстояние - есть расстояние между двумя листами.
|proof= Доказательство: пусть нет, пусть искомое расстояние - есть расстояние между вершина a, b, где b - не является листом.Т.к. b не является листом, то значит её степень > 1 => из неё существует ребро в непосещенную вершину (дважды посетить вершину b мы не можем). Лемма доказана.
Запустив BFS от произвольной вершины. Мы получим дерево BFS. Теорема. В дереве BFS не существует ребер между вершинами из разных поддеревьев некоторого из общего предка. Доказательство как про дерево DFS.
Мы свели задачу к нахождению вершины v, такой, что сумма глубин поддеревьев максимальна.
Докажем, что одно из искомых поддеревьев содержит самый глубокий лист. Пусть нет, тогда взяв расстояние от v до глубочайшего листа мы можем улучшить ответ.
Таким образом мы доказали, что нам нужно взять наиглубочайшую вершину t после первого bfs, очевидно что ей в пару надо сапоставить вершину p , что dist(t, p) - max . Очевидно, что проблема решается запуском bfs из t.
Оценка производительности: Все операции кроме bfs - О(1) BFS работает линейное время,запускаем мы его 2 раза.Получаем O(V+E)