Достаточно доказать, что [math]D(G - a) = D(G)[/math].
- покажем, что [math]D(G - a) \supset D(G)[/math] :
- Пусть [math]u \in D(G)[/math]. Тогда существует максимальное паросочетание [math]M_u[/math] графа [math]G[/math], не покрывающее [math]u[/math]. Поскольку любое максимальное паросочетание графа [math]G[/math] покрывает a, то [math] \alpha (G - a) = \alpha (G) - 1 [/math] и более того, если, для некоторой вершины [math]x \in D(G)[/math], [math]ax \in M_u[/math], то [math]M_u \setminus {ax} [/math] - максимальное паросочетание графа [math] G - a [/math], не покрывающее [math] u [/math]. Таким образом, [math]D(G - a) \supset D(G) [/math].
- покажем, что [math] D(G - a) \subset D(G)[/math]:
Предположим, что существует максимальное паросочетание [math]M'[/math] графа [math] G - a[/math], не покрывающее вершину [math]v[/math] [math] \notin D(G)[/math]. Пусть [math] w \in D(G) [/math] - смежная с [math] a \in A(G)[/math] вершина, а [math] M_w [/math]- максимальное паросочетание графа [math] G [/math], не покрывающее [math] w [/math]. Так как [math]v[/math] [math] \notin D(G) [/math], максимальное паросочетание [math] M_w [/math] покрывает вершину [math]v[/math]. Рассмотрим граф [math] H = G(M_w \bigcup M') [/math] - очевидно, он является объединением нескольких путей и чётных циклов. Пусть [math] U [/math] - компонента связности графа [math] H [/math], содержащая [math]v[/math]. Так как [math] deg_H(v) = 1 [/math](степень вершины), то [math] P = H(U) [/math] - путь с началом в вершине [math]v[/math]. В пути [math]P[/math] чередуются рёбра из [math] M_w[/math] и [math]M' [/math], причём начинается путь ребром из [math]M_w [/math]. Так как [math] deg_H(a) = 1 [/math], то вершина a либо не принадлежит пути [math]P[/math], либо является её концом (в этом случае последнее ребро пути принадлежит паросочетанию [math] M_w[/math]). Рассмотрим несколько случаев:
a. Путь [math]P[/math] кончается ребром из [math] M'[/math] (см. рисунок)
Рассмотрим паросочетание [math]M_v = M_w \oplus E(P)[/math] (симметрическая разность
[math] M_w[/math] и [math]E(P)[/math]. то есть, рёбра, входящие ровно в одно из двух множеств).
Очевидно, [math]M_v[/math] - максимальное паросочетание графа [math]G[/math], не покрывающее [math]v[/math], поэтому [math] v \in D(G)[/math], противоречие.
b. Путь [math]P[/math] кончается ребром из [math] M_w[/math], вершина a - конец пути [math]P[/math]. (см.рисунок)
Рассмотрим паросочетание [math]M_v∗ = (M_w \oplus E(P)) \bigcup \{aw\} [/math]. Тогда [math] M_v∗ [/math] - максимальное паросочетание графа [math] G [/math], не покрывающее [math] v [/math], поэтому [math] v \in D(G) [/math], противоречие.
c. Путь [math] P [/math] кончается ребром из [math] M_w, a \in V(P) [/math] (см. рисунок)
Рассмотрим паросочетание [math] M'' = M \oplus E(P) [/math]. Тогда [math] |M''| = |M'| + 1 [/math], причём [math]M'' \subset E(G - a)[/math]. Противоречие с максимальностью паросочетания [math]M'[/math].
Таким образом, наше предположение невозможно и [math]D(G - a) \subset D(G)[/math].
А значит, [math]D(G - a) = D(G)[/math]. |