Обсуждение участника:NikitaMarkovnikov
| Теорема (Поша): | 
| Пусть граф  имеет  вершин. Если для всякого  число вершин со степенями, не превосходящими , меньше чем , и для нечетного  число вершин степени  не превосходит , то  — гамильтонов граф. | 
| Доказательство: | 
| Предположим, что теорема неверна, и пусть — максимальный негамильтонов граф с вершинами, удовлетворяющий условиям теоремы. Легко видеть, что добавление любого ребра в граф, обладающий указанными свойствами, приводит к графу, который также обладает этими свойствами. Таким образом, поскольку добавление к произвольного ребра приводит к гамильтонову ребру, любые две несмежные вершины соединимы простой остовной цепью. Покажем сначала, что всякая вершина, степень которой не меньше , смежна с каждой вершиной со степенью, большей чем . Допустим (не теряя общности), что и , но вершины и не смежны. Тогда существует простая остовная цепь , соединяющая и . Обозначим вершины, смежные с , через , где и . Ясно, что вершина не может быть смежной ни с одной вершиной из вида , поскольку тогда в был бы гамильтонов цикл . Далее, так как , то , что невозможно. Поэтому и должны быть смежны. Отсюда следует, что если для всех вершин , то — гамильтонов граф. В силу изложенного выше каждая пара вершин графа смежна, т.е. — полный граф. Мы пришли к противоречию, поскольку — гамильтонов граф для всех .Таким образом, в есть вершина с . Обозначим через наибольшую среди степеней всех таких вершин. Выберем такую вершину , что . По принятому предположению число вершин со степенями, не превосходящими , не больше чем , поэтому должно быть более чем вершин со степенями, превосходящими , и, следовательно, не меньшими чем . В результате найдется некоторая вершина, скажем , степени по крайней мере , не смежная с . Так как и не смежны, то существует остовная простая цепь . Как и выше, обозначим через вершины графа , смежные с , и заметим, что вершина не может быть смежной ни с одной из вершин для . Но поскольку и не смежны, а имеет степень не меньше , то, как было показано в первой части доказательства, должно быть меньше чем . Так как по предположению число вершин со степенями, не превосходящими , меньше чем , то хотя бы одна из вершин , скажем , должна иметь степень не меньше . Итак, мы установили, что степени двух несмежных вершин и не меньше . Полученное противоречие завершает доказательство теоремы. | 
{{Следствие
|id=идентификатор (необязательно), пример: proposal1. 
|author=Автор утверждения (необязательно)
|about=О чем утверждение (необязательно)
|statement=утверждение
|proof=доказательство (необязательно)
}}
