Список заданий по ТФЯ
Версия от 21:16, 10 сентября 2014; Niyaz.nigmatullin (обсуждение | вклад)
<wikitex>
Теория формальных языков, 5 семестр
- Построить конечный автомат для языка слов над бинарным алфавитом, в которых четность числа 0 равна четности числа 1
- Построить конечный автомат для языка слов над бинарным алфавитом, в которых число нулей кратно 3
- Построить конечный автомат для языка слов над бинарным алфавитом, в которых нет трех нулей подряд
- Построить конечный автомат для языка слов над бинарным алфавитом, которые представляют собой двоичную запись чисел, кратных 5
- Построить конечный автомат для языка слов над бинарным алфавитом, в которых число нулей не кратно 3
- Построить конечный автомат для языка слов над бинарным алфавитом, в которых есть три нуля подряд. Сделайте вывод из последних двух заданий.
- Построить конечный автомат для языка слов над бинарным алфавитом, в которых число нулей кратно 3 и которые представляют собой двоичную запись чисел кратных 5.
- Построить конечный автомат для языка слов над бинарным алфавитом, в которых число нулей кратно 3 или которые представляют собой двоичную запись чисел кратных 5. Сделайте вывод из последних двух заданий.
- Построить конечный автомат для языка слов над бинарным алфавитом, в пятый символ с конца - 0. Можно построить недетерминированный автомат.
- Постройте детерминированный автомат для предыдущего задания или докажите, что в нем слишком много состояний, чтобы его рисовать ;).
- Постройте регулярное выражение для языка слов над бинарным алфавитом, в которых нет двух нулей подряд.
- Построить конечный автомат для языка слов над бинарным алфавитом, в которых число 0 кратно 3.
- ХМУ 4.2.2, стр 163
- ХМУ 4.2.3, стр 163
- ХМУ 2.3.1, стр 83
- Докажите, что минимальный ДКА для языка $(0|1)^*0(0|1)^k$ содержит минимум $2^k$ состояний
- ХМУ 4.2.4, стр 163
- ХМУ 4.2.5, стр 164
- ХМУ 4.2.6, стр 164
- ХМУ 4.2.7, стр 164
- ХМУ 4.2.8, стр 164
- ХМУ 4.2.10, стр 165
- ХМУ 4.2.11, стр 165
- Доказать нерегулярность языка слов $0^n1^n$
- Доказать нерегулярность языка, каждое слово которого содержит поровну 0 и 1.
- Доказать нерегулярность языка палиндромов.
- Доказать нерегулярность языка тандемных повторов.
- Доказать нерегулярность языка $0^n1^m$, $n \le m$
- Доказать нерегулярность языка $0^n1^m$, $n \ne m$
- Доказать нерегулярность языка $0^{n^2}$
- Доказать нерегулярность языка $0^p$, $p$ — простое
- Доказать нерегулярность языка двоичных записей простых чисел
- Доказать нерегулярность языка $0^n1^m$, $gcd(n, m) = 1$
- Доказать нерегулярность языка $0^a1^b2^c$, $a \ne b$ и $b \ne c$
</wikitex>