Двойственный граф планарного графа

Материал из Викиконспекты
Версия от 02:22, 19 октября 2010; Kirelagin (обсуждение | вклад) (Самодвойственные графы)
Перейти к: навигация, поиск
Эта статья находится в разработке!


Определение:
Граф[1] G′ называется двойственным к планарному графу G, если:
  1. Вершины G′ соответствуют граням G
  2. Между двумя вершинами в G′ есть ребро тогда и только тогда, когда соответствующие грани в G имеют общее ребро
Граф (белые вершины) и двойственный ему (полосатые вершины).


«…Для данного плоского графа G его двойственный граф G′ строится следующим образом: поместим в каждую область G (включая внешнюю) по одной вершине графа G′ и, если две области имеют общее ребро x, соединим помещенные в них вершины ребром x′, пересекающим только x. В результате всегда получится плоский псевдограф. Ясно, что G′ имеет петлю тогда и только тогда, когда в G есть концевая вершина; G′ имеет кратные рёбра тогда и только тогда, когда две области графа G содержат по крайней мере два общих ребра. Таким образом, двусвязный плоский граф имеет всегда в качестве двойственного или граф или мультиграф, в то время как двойственный граф трёхсвязного плоского графа всегда представляет собой граф. Другими примерами двойственных графов являются платоновы графы: тетраэдр — самодвойственный граф, куб и октаэдр — двойственные, так же как додекаэдр и икосаэдр…»[2].


В верхнем двойственном графе есть вершина степени 6, а в нижнем — нет. Следовательно, они не изоморфны.

Свойства

Дерево и двойственный к нему «цветок».‎
  • Если G′двойственный к двусвязному графу G, то Gдвойственный к G′
  • У одного и того же графа может быть несколько двойственных, в зависимости от конкретной укладки (см. картинку)
  • Поскольку любой трёхсвязный планарный граф допускает только одну укладку на сфере[3], у него должен быть единственный двойственный граф
  • Мост переходит в петлю, а петля — в мост
  • Мультиграф, двойственный к дереву, — цветок


Самодвойственные графы

Определение:
Планарный граф называется самодвойственным, если он изоморфен своему двойственному графу.
Колесо и колесо.
[math]K_4[/math] (он же кольцо).


Утверждение:
[math]K_1[/math] и [math]K_4[/math] — самодвойственные графы. Среди полных графов других самодвойственных нет.
[math]\triangleright[/math]
Проверить, что [math]K_1[/math] и [math]K_4[/math] полны и самодвойственны несложно. Докажем, что других нет.
Поскольку грани графа переходят в рёбра, количество рёбер и граней в исходном графе должно совпадать, т.е. [math]V = F[/math].
Подставив в формулу Эйлера имеем: [math]2V = E + 2 \Leftrightarrow V = \frac{E}{2} + 1[/math].
В полном графе [math]E = \frac{V \dot (V - 1)}{2}[/math].
Получаем квадратное уравнение: [math]V^2 - 5V + 4 = 0[/math].
Его решения: [math]V_1 = 1[/math] и [math]V_2 = 4[/math].
Таким образом, чтобы полный граф был самодвойственным, в нём должна быть ровно одна или четыре вершины.
[math]\triangleleft[/math]

Утверждение:
Все колёса самодвойственны.
[math]\triangleright[/math]
Это утверждение очевидно. Достаточно посмотреть на два варианта укладки колеса (вершина с большой степенью внутри или вершина с большой степенью снаружи) и убедиться в том, что они двойственны друг другу.
[math]\triangleleft[/math]

Примечания

  1. На самом деле, двойственный графпсевдограф, поскольку в нём могут быть петли и кратные рёбра.
  2. Харари, Ф. Теория графов. — М.: Книжный дом «ЛИБРОКОМ», 2009. — С. 138. — ISBN 978­-5­-397­-00622­-4.
  3. Харари, Ф. Теория графов. — М.: Книжный дом «ЛИБРОКОМ», 2009. — Теорема 11.5 — С. 130. — ISBN 978­-5­-397­-00622­-4.