Матричный умножитель
НЕТ ВОЙНЕ |
24 февраля 2022 года российское руководство во главе с Владимиром Путиным развязало агрессивную войну против Украины. В глазах всего мира это военное преступление совершено от лица всей страны, всех россиян. Будучи гражданами Российской Федерации, мы против своей воли оказались ответственными за нарушение международного права, военное вторжение и массовую гибель людей. Чудовищность совершенного преступления не оставляет возможности промолчать или ограничиться пассивным несогласием. Мы убеждены в абсолютной ценности человеческой жизни, в незыблемости прав и свобод личности. Режим Путина — угроза этим ценностям. Наша задача — обьединить все силы для сопротивления ей. Эту войну начали не россияне, а обезумевший диктатор. И наш гражданский долг — сделать всё, чтобы её остановить. Антивоенный комитет России |
Распространяйте правду о текущих событиях, оберегайте от пропаганды своих друзей и близких. Изменение общественного восприятия войны - ключ к её завершению. |
meduza.io, Популярная политика, Новая газета, zona.media, Майкл Наки. |
Принцип работы
Умножение в бинарной системе
Умножение в бинарной системе счисления происходит точно так же, как в десятичной — по схеме умножения столбиком. Если множимое —
разрядное, а множитель — разрядный, то для формирования произведения требуется вычислить частичных произведений и сложить их между собой.Вычисление частичных произведений
В бинарной системе для вычисления частичного произведения можно воспользоваться логическими элементами
— конъюнкторами. Каждое частичное произведение — это результат выполнения логических операции ( между текущим , где , разрядом множителя и всеми разрядами множимого) и сдвига результата логической операции влево на число разрядов, соответствующее весу текущего разряда множителя. Матричный умножитель вычисляет частичные произведения по формуле:
Суммирование частичных произведений
На этом этапе происходит сложение всех частичных произведений
.Схема
Принципиальная схема умножителя, реализующая алгоритм двоичного умножения в столбик для двух четырёх — разрядных чисел приведена на рисунке. Формирование частичных произведений осуществляется посредством логических элементов
. Полные одноразрядные сумматоры обеспечивают формирование разрядов результата. Разрядность результата — определяется разрядностью множителя — и множимого — :.
Все конъюнкторы работают параллельно.
Полные одноразрядные сумматоры обеспечивают поразрядное сложение результатов конъюнкций и переносов из предыдущих разрядов сумматора.
В приведенной схеме использованы четырех разрядные сумматоры с последовательным переносом.
Время выполнения операции умножения определяется временем распространения переносов до выходного разряда .
Матричный умножитель
Если внимательно посмотреть на схему матричного умножителя (англ. binary multiplier), то можно увидеть, что она образует матрицу, сформированную проводниками, по которым передаются разряды числа
и числа . В точках пересечения этих проводников находятся логические элементы . Именно по этой причине умножители, реализованные по данной схеме, получили название матричных умножителей.Схемная сложность
Частичные произведения вычисляются за
шагов. Сложение с вычислением переносов включает шаг. Последнее сложение можно выполнить за .В итоге суммарное время работы:
Время работы схемы можно сократить, если сумматоры располагать не последовательно друг за другом, как это предполагается алгоритмом, приведенным на первом рисунке (общая схема), а суммировать частичные произведения попарно, затем суммировать пары частичных произведений и т.д. В этом случае время выполнения операции умножения значительно сократится.
Особенно заметен выигрыш в быстродействии при построении многоразрядных умножителей, однако ничего не бывает бесплатно. В обмен на быстродействие придётся заплатить увеличением разрядности сумматоров, а значит сложностью схемы.
Есть и более быстрые способы умножения двух чисел, например умножение с помощью дерева Уоллеса, которое работает .
См. также
Источники информации
- Кормен Т., Лейзерсон Ч., Ривест Р.. Алгоритмы: построение и анализ = Introduction to Algorithms / Пер. с англ. под ред. А. Шеня. — М.: МЦНМО, 2000. — 960 с. — ISBN 5-900916-37-5