Теорема Форда-Фалкерсона о потоке минимальной стоимости
Лемма (о представлении потоков): |
Пусть и — потоки в сети . Тогда можно представить как сумму , где — поток в остаточной сети . |
Доказательство: |
Рассмотрим произвольное ребро Антисимметричность и закон сохранения потока проверяются аналогично из . . Таким образом, поток через каждое ребро не превосходит пропускной способности остаточной сети. лемме о сложении потоков. |
Теорема: |
Пусть:
Тогда: поток — поток минимальной стоимости среди потоков величины , где — поток величины , проходящий по пути . |
Доказательство: |
Пусть лемме о сложении потоков его величина будет равна . — поток минимальной стоимости величины в . Представим , где — поток в остаточной сети . Тогда разность будет потоком в сети и поПо теореме о декомпозиции можно представить как сумму элементарных потоков вдоль путей и циклов . В этом представлении нет отрицательных циклов, иначе прибавление его к даст поток меньшей стоимости. Если есть положительный цикл, то вычтем его из и получим поток меньшей стоимости. Таким образом, для всех циклов. Тогда Отсюда . и поток — минимальный. |
См. также
- Поток минимальной стоимости
- Использование потенциалов Джонсона при поиске потока минимальной стоимости
Источники информации
Литература
- Ravindra Ahuja, Thomas Magnanti, James Orlin. Network flows (1993)