Связь вершинного покрытия и независимого множества
НЕТ ВОЙНЕ |
24 февраля 2022 года российское руководство во главе с Владимиром Путиным развязало агрессивную войну против Украины. В глазах всего мира это военное преступление совершено от лица всей страны, всех россиян. Будучи гражданами Российской Федерации, мы против своей воли оказались ответственными за нарушение международного права, военное вторжение и массовую гибель людей. Чудовищность совершенного преступления не оставляет возможности промолчать или ограничиться пассивным несогласием. Мы убеждены в абсолютной ценности человеческой жизни, в незыблемости прав и свобод личности. Режим Путина — угроза этим ценностям. Наша задача — обьединить все силы для сопротивления ей. Эту войну начали не россияне, а обезумевший диктатор. И наш гражданский долг — сделать всё, чтобы её остановить. Антивоенный комитет России |
Распространяйте правду о текущих событиях, оберегайте от пропаганды своих друзей и близких. Изменение общественного восприятия войны - ключ к её завершению. |
meduza.io, Популярная политика, Новая газета, zona.media, Майкл Наки. |
Содержание
Независимое множество
Определение: |
Независимым множеством вершин (англ. independent vertex set) графа | называется такое подмножество множества вершин графа , что .
Определение: |
Максимальным независимым множеством (англ. maximum independent set) называется независимое множество вершин максимальной мощности. |
Связь вершинного покрытия и независимого множества
Теорема: |
Дополнение минимального вершинного покрытия является максимальным независимым множеством. |
Доказательство: |
Пусть произвольное максимальное независимое множество вершин графа , а его минимальное вершинное покрытие. Из определения следует, что любое ребро соединяет либо вершину из и , либо вершины множества . Таким образом, каждое ребро инцидентно некоторой вершине множества , то есть является некоторым вершинным покрытием. Тогда или .Рассмотрим произвольное минимальное вершинное покрытие графа Значит, . Так как каждое ребро инцидентно хотя бы одной вершине из , то является независимым множеством. Тогда или . , и является максимальным независимым множеством, а — минимальным вершинным покрытием. |