Эта статья находится в разработке!
Подмножества метрического пространства
Если [math] (X, \rho) [/math] — метрическое пространство, то [math]\forall Y \subset X : (Y, \rho)[/math], очевидно, тоже метрическое пространство.
Окрестность точки в метрическом пространстве
Если [math]x \in A[/math], то [math]A[/math] — окрестность точки [math]x[/math], если [math]\exists V: x \in V \subset A [/math]
[math]O(x)[/math] — окрестность точки [math]x[/math].
Примеры
- Любой открытый шар [math] V_r(x) [/math] является окрестностью точки [math]x[/math].
- Числовая прямая — окрестность любого числа.
Предельная точка
Определение: |
Рассмотрим [math]A \subset X[/math]. Тогда [math]b \in X[/math] — предельная точка для [math]A[/math], если в любой окрестности [math]O(b)[/math] содержится бесконечное число точек, принадлежащих [math]A[/math]. |
Примеры
- [math] X = \mathbb R, A = (0; 1);\ 0 \notin A[/math], [math]0[/math] — предельная точка(как и [math]1[/math], например).
- Пусть [math] A \subset X[/math] и [math]\ a [/math] — предельная точка [math]A[/math]. Рассмотрим два метрических пространства [math] (X,\rho) [/math] и [math] (Y, \bar \rho) [/math].
- Пусть [math] f: A \rightarrow Y, b = \lim\limits_{x \rightarrow a} f(x), b \in Y[/math] , т.е. [math]\forall \varepsilon \gt 0 \, \exists \delta \gt 0: 0 \lt \rho(x, a) \lt \delta \Rightarrow \bar \rho(f(x), b) \lt \varepsilon [/math].
- Так как [math]a[/math] — предельная точка [math]A[/math], то у нас есть гарантии, что [math]0 \lt \rho(x, a) \lt \delta[/math] выполнимо для бесконечного числа точек [math] x \in A[/math]. Отметим: если [math]a \in A[/math], то [math]f(a)[/math] нас не интересует.
- Например: [math]\mathbb R : f:(a - 1; a + 1) \rightarrow \mathbb R, a[/math] — предельная точка.
- [math]\forall \varepsilon \gt 0\ \ \exists \delta \gt 0 : 0 \lt |x - a| \lt \delta \Rightarrow |f(x) - b| \lt \varepsilon [/math]
-
TODO: что-то обрезано вначале [math]a \in A, \lim\limits_{x \rightarrow a}f(x) = f(a)[/math], тогда [math]f[/math] непрерывна в точке [math]a[/math].
Если [math]f[/math] имеет предел, то в ситуации общих МП:
1) Предел сложного отображения.
[math] A \subset X,\ B \subset Y, Z[/math]. [math]X, Y, Z[/math] — МП, у каждого своя метрика. [math]a[/math] — предельная точка [math]A[/math], [math]b = \lim\limits_{x \rightarrow a} f(x)[/math], тогда [math]b[/math] предельная у
TODO: WTF?? при этом:
- [math]g: B \rightarrow Z. \qquad d = \lim\limits_{y \rightarrow b} g(y) [/math]
- [math]Z = g(f(x))[/math]
- [math]f: A \Rightarrow B, f(x) \ne b, x \in A[/math]
- [math]g \circ f(x) = g(f(x)). \qquad d = \lim\limits_{y \rightarrow b} g(y): [/math]
- [math]\forall \varepsilon \gt 0 \, \exists \delta_1 \gt 0 : 0 \lt \bar \rho (y, b) \lt \delta_1 \Rightarrow \bar{\bar \rho}(g / y, d) \lt \varepsilon \\
\forall \delta_1 \gt 0 \, \exists \delta \gt 0 : 0 \lt \rho (x, a) \lt \delta \Rightarrow \bar \rho (f(x), b) \lt \delta_1 [/math]
- [math]f(x) \ne b \Rightarrow 0 \lt \bar \rho (f(x), b) \lt \delta_1 [/math], а тогда [math]y = f(x) [/math]
- [math]\forall \varepsilon \gt 0 \, \exists \delta \gt 0: 0 \lt \rho (x, a) \lt \delta \Rightarrow \bar{\bar \rho} (g(y), d) \lt \varepsilon \Rightarrow \lim\limits_{x \rightarrow a} g(f(x)) = d [/math]( у сложной функции предел совпадает с пределом внешней фукнции) [math]\Rightarrow[/math] сложная фукнция от двух непрерывных — непрерывна.