Метод четырёх русских для умножения матриц
Содержание
Постановка задачи
Рассмотрим следующую задачу: «Дано две квадратных матрицы
и , состоящие из нулей и единиц. Нужно найти их произведение. При этом, все операции выполняются по модулю .»Простое решение
Если мы будем считать произведение матриц
по определению( ), то трудоёмкость алгоритма составит — каждый из элементов результирующей матрицы вычисляется за время, пропорциональное .Сейчас будет показано, как немного уменьшить это время.
Предподсчёт
Воспользуемся следующим приёмом. Возьмём некоторое целое число
. Для всех возможных пар двоичных векторов длины подсчитаем и запомним их скалярное произведение по модулю .Сжатие матриц
Воспользуемся полученным в предыдущем пункте результатом.
Возьмём первую матрицу. разделим каждую её строку на куски размера
. Для каждого куска определим номер двоичного вектора, который соответствует числам, находящимся на этом куске. Если кусок получился неравным по длине (последний кусок строки), то будем считать, что в конце в нём идут не влияющие на умножение нули. Получим матрицу .Аналогично поступим с матрицей
, вместо строк деля столбцы. Получим матрицу .Теперь, если вместо произведения матриц
и считать произведение новых матриц и , воспользовавшись посчитанными скалярными произведениями, то каждый элемент матрицы будет получаться уже за время, пропорциональное вместо , и время произведения матриц сократится с до .Оценка трудоёмкости и выбор k
Оценим трудоёмкость данного алгоритма.
- Предподсчёт скалярных произведений работает за .
- Создание матриц и —
- Перемножение полученных матриц —
Итого:
.Взяв
, получаем итоговую трудоёмкость