Иммунные и простые множества
Определение: |
Множество натуральных чисел | называется иммунным (англ. immune set), если оно бесконечно и не содержит бесконечных перечислимых подмножеств.
Определение: |
Множество натуральных чисел | называется простым (англ. simple set), если — перечислимое, бесконечное и — иммунное.
Теорема о простом множестве
Теорема: |
Существует простое множество. |
Доказательство: |
Рассмотрим все программы. Для некоторого перечислимого языка какая-то из них является его перечислителем. Рассмотрим программу : function главной нумерации программу на шагов напечатать первый , который вывела эта программа, такой что(): for for запустить -ую в
Докажем несколько утверждений, из которых будет очевидна правильность доказательства теоремы. Необходимо, чтобы перечислимое множество имело иммунное дополнение. Это означает, что должно пересекаться с любым бесконечным перечислимым множеством.
По построению, для любого множества в будет содержаться первый его элемент не меньший , где — номер перечислителя множества .
Из утверждения 1 следует, что существует элемент , принадлежащий , и, следовательно, не принадлежащий .
Среди чисел от до множеству принадлежат не более . Следовательно принадлежат не менее .Вернемся к доказательству теоремы. Получаем: Из 2 и 3 утверждений следует, что По построению — иммунно. перечислимо, его дополнение иммунно и, по утверждению 3, бесконечно, а значит — оно простое. |
Простые множества являются примерами перечислимых множеств, не являющихся m-полными. Именно так и возникло понятие простого множества: Пост искал пример перечислимого неразрешимого множества, которое не было бы m-полным [1]. .
См. также
Примечания
Источники информации
- Н. К. Верещагин, А. Шень. Лекции по математической логике и теории алгоритмов. Часть 3. Вычислимые функции. — М.: МЦНМО, 1999. С. 134. ISBN 5-900916-36-7
- Роджерс Х. Теория рекурсивных функций и эффективная вычислимость. — М.:Мир, 1972. С. 141-143.
- Wikipedia — Simple set