Комбинаторные объекты
Определение: |
Комбинаторные объекты (англ. combinatorial objects) — это конечные множества, на элементы которых могут накладываться определённые ограничения, такие как: различимость или неразличимость элементов, возможность повторения одинаковых элементов и т. п. |
Определение: |
Если два комбинаторных объекта, различающихся только порядком элементов, считаются различными, то они называются упорядоченными. |
Содержание
Примеры комбинаторных объектов
Битовые вектора
Битовые вектора — последовательность нулей и единиц заданной длины. Количество таких объектов вычисляется по формуле , так как на каждое из мест мы можем поставить один из двух элементов.
Перестановки
Перестановки[1] — это упорядоченный набор чисел , обычно трактуемый как биекция на множестве , которая числу ставит соответствие -й элемент из набора. Количество перестановок равно . Получить эту формулу можно следующим образом: поставим один из элементов на первое место, далее поставим на второе один из оставшихся элементов,... один из элемента на последнее. Всего таких выборов можно совершить .
Размещения
Размещение из
по — это упорядоченный набор из различных элементов некоторого -элементного множества. Таких наборов . Выведем формулу подобно тому, как выводили для перестановок: на первое место можно поставить один из элементов, на следующее один из ,... и на последнее один из . Всего получится .Сочетания
Сочетания[2] из по — это набор элементов, выбранных из данных элементов. Количество таких наборов вычисляется по формуле . Выведем данную формулу из формулы размещений, а именно заметим, что в размещениях порядок элементов имеет значение, а в сочетаниях нет. Это значит, что наборы и эквивалентны. То есть в размещениях любой вариант сочетания повторяется столько же раз, сколько можно сделать перестановок для мест. Тогда .
Разбиение на неупорядоченные слагаемые
Разбиение числа на неупорядоченные слагаемые — это представление числа
в виде суммы слагаемых. Всего таких разбиений , если , и , если ; где — число, не превышаемое слагаемыми, , при , причем начальное значение — это . Данную рекуррентную формулу можно понимать как " ".Разбиение
Разбиение множества
на подмножества называется семейство непустых множеств , где — некоторое множество индексов, если:- для любых , таких что ;
- .
Количество неупорядоченных разбиений
-элементного множества на непустых подмножеств.Источники
https://ru.wikipedia.org/wiki/%D0%A0%D0%B0%D0%B7%D0%B1%D0%B8%D0%B5%D0%BD%D0%B8%D0%B5_%D1%87%D0%B8%D1%81%D0%BB%D0%B0 неупорядоченные слагаемые