Предел отображения в метрическом пространстве

Материал из Викиконспекты
Версия от 01:37, 14 декабря 2010; Geralt (обсуждение | вклад) (Пропущенное)
Перейти к: навигация, поиск
Эта статья находится в разработке!

Подмножества метрического пространства

Если [math] (X, \rho) [/math]метрическое пространство, то [math]\forall Y \subset X : (Y, \rho)[/math], очевидно, тоже метрическое пространство.

Окрестность точки в метрическом пространстве

Если [math]x \in A[/math], то [math]A[/math] — окрестность точки [math]x[/math], если [math]\exists V: x \in V \subset A [/math] [math]O(x)[/math] — окрестность точки [math]x[/math].

Примеры

  • Любой открытый шар [math] V_r(x) [/math] является окрестностью точки [math]x[/math].
  • Числовая прямая — окрестность любого числа.

Предельная точка

Определение:
Рассмотрим [math]A \subset X[/math]. Тогда [math]b \in X[/math]предельная точка для [math]A[/math], если в любой окрестности [math]O(b)[/math] содержится бесконечное число точек, принадлежащих [math]A[/math].


Примеры

  1. [math] X = \mathbb R, A = (0; 1);\ 0 \notin A[/math], [math]0[/math] — предельная точка(как и [math]1[/math], например).
  2. Пусть [math] A \subset X[/math] и [math]\ a [/math] — предельная точка [math]A[/math]. Рассмотрим два метрических пространства [math] (X,\rho) [/math] и [math] (Y, \bar \rho) [/math].
Пусть [math] f: A \rightarrow Y, b = \lim\limits_{x \rightarrow a} f(x), b \in Y[/math] , т.е. [math]\forall \varepsilon \gt 0 \, \exists \delta \gt 0: 0 \lt \rho(x, a) \lt \delta \Rightarrow \bar \rho(f(x), b) \lt \varepsilon [/math].
Так как [math]a[/math] — предельная точка [math]A[/math], то у нас есть гарантии, что [math]0 \lt \rho(x, a) \lt \delta[/math] выполнимо для бесконечного числа точек [math] x \in A[/math]. Отметим: если [math]a \in A[/math], то [math]f(a)[/math] нас не интересует.
Например: [math]\mathbb R : f:(a - 1; a + 1) \rightarrow \mathbb R, a[/math] — предельная точка.
[math]\forall \varepsilon \gt 0\ \ \exists \delta \gt 0 : 0 \lt |x - a| \lt \delta \Rightarrow |f(x) - b| \lt \varepsilon [/math]
Если при [math]a \in A выполняется \lim\limits_{x \rightarrow a}f(x) = f(a)[/math], тогда говорят, что отображение [math]f[/math] непрерывно в точке [math]a[/math].

Если [math]f[/math] имеет предел, то в ситуации общих МП: 1) Предел сложного отображения. [math] A \subset X,\ B \subset Y, Z[/math]. [math]X, Y, Z[/math] — МП, у каждого своя метрика. [math]a[/math] — предельная точка [math]A[/math], [math]b = \lim\limits_{x \rightarrow a} f(x)[/math], тогда [math]b[/math] предельная у TODO: WTF?? при этом:

[math]g: B \rightarrow Z. \qquad d = \lim\limits_{y \rightarrow b} g(y) [/math]
[math]Z = g(f(x))[/math]
[math]f: A \Rightarrow B, f(x) \ne b, x \in A[/math]
[math]g \circ f(x) = g(f(x)). \qquad d = \lim\limits_{y \rightarrow b} g(y): [/math]
[math]\forall \varepsilon \gt 0 \, \exists \delta_1 \gt 0 : 0 \lt \bar \rho (y, b) \lt \delta_1 \Rightarrow \bar{\bar \rho}(g / y, d) \lt \varepsilon \\ \forall \delta_1 \gt 0 \, \exists \delta \gt 0 : 0 \lt \rho (x, a) \lt \delta \Rightarrow \bar \rho (f(x), b) \lt \delta_1 [/math]
[math]f(x) \ne b \Rightarrow 0 \lt \bar \rho (f(x), b) \lt \delta_1 [/math], а тогда [math]y = f(x) [/math]
[math]\forall \varepsilon \gt 0 \, \exists \delta \gt 0: 0 \lt \rho (x, a) \lt \delta \Rightarrow \bar{\bar \rho} (g(y), d) \lt \varepsilon \Rightarrow \lim\limits_{x \rightarrow a} g(f(x)) = d [/math]( у сложной функции предел совпадает с пределом внешней фукнции) [math]\Rightarrow[/math] сложная фукнция от двух непрерывных — непрерывна.

Печальная часть статьи

В том что я набрал, очень сильно отличаются конспекты. Поэтому пока даже не форматирую в tex. f(x) = \rho(x, a) f: X \rightarrow R_+. Проверим, что \forall x f - непрерывное отображение. Доказательство: \rho(x_2, a) <= \rho(x_1, a) + \rho(x_2, x_1) \rho(x_1, a) <= \rho(x_2, a) + \rho(x_1, x_2) |\rho(x_2, a) - \rho(x_1, a)| <= \rho(x_1, a) - \rho(x_2, a) <= \rho(x_2, x_1) |f(x_2) - f(x_1)| <= \rho(x_2, x_1) \forall x \Rightarrow f(x) непрерывна \delta = \varepsilon ?????oO f(x) = \rho(x, A) = def inf \rho(x, a), a \in A - расстояние от x до A.

f(x) - непрерывна Док-во: f(x) <= \rho(x, a), a \in A \rho(x_1, A) <= \rho(x_2, A) + \rho(x_2, x_1) \rho(x_2, A) <= \rho(x_1, A) + \rho(x_2, x_1) |\rho(x_1, A) - \rho(x_2, A)| <= \rho(x_1, x_2) \Rightarrow f(x) непрерывна при?????

Утверждение: F - замкнуто \Rightarrow x \in F \Leftrigharrow \rho(x, F) = 0

TODO: непонятно. у меня и Артема в конспекте написано что доказательство - упражнение на дом, но у Вали в конспекте что- то есть. Тут надо проверить, правда ли это: \rho(x, F) = inf \rho(x, a), a \in F \rho(x, x) = 0, \rho >= 0 \Rightarrow inf ?????? \rho(x, F) = 0, \Leftarrow x \in F Обратно: x \in F \Rightarrow \rho(x, x) = 0 ; inf \rho(x, a) = 0 (т.к. \rho >= 0) \Rightarrow \rho(x ???? \forall a \in F

Теорема(о нормальности МП): Любое МП - нормальное. (X, \rho) - МП. F_1 \cap F_2 = \varnothing F_1, F_2 - замкнутые \Rightarrow \exists G_1, G_2: F_j \in G_j , j = 1, 2; G_1 \cap G_2 = \varnothing Док-во: f(x) = \frac {\rho(x, F_1)} {\rho(x, F_1) + \rho(x, F_2)}. Т.к. F_1 \cap F_2 = \varnothing и F_1, F_2 - замкнуты, то знаменатель != 0 \Rightarrow f(x) корректна и непрерывна в силу непрерывности \rho. При этом: x \in F_1 \Rightarrow f(x) = 0; x \in F_2: f(x) = 1. Рассмотрим на R пару интервалов: (- \infty; \frac 1 3) и (\frac 1 2, + \infty). Т.к. f(x) неперывна, то прообраз открытого множества - открытое множество. G_1 = f^{-1} ( - \infty; \frac 1 3); G_2 = f^{-1}(\frac 1 2, + \infty) F_1 \in G_1; F_2 \in G_2; G_1 \cap G_2 = \varnothing, ч.т.д.

Свойства непрерывных отображений 1) Определение: (X, \rho) - МП. K \in X является компактом в X, если из любой последовательности точек \in K можно выделить сходящуюся подпоследовательность x_n: lim x_n \in K. [a, b] на \mathbb{R} - классический пример. Легко видеть что если K - компакт, то оно ограниченное, замкнутое. Ограниченное множество можно пометить в шар. Обратное не верно в общем случае. 2) Связные мн-ва: A \in X является связным, если нельзя подобрать пару G_1, G_2 \in \tau: G_1 \cap G_2 = \varnothing, A = (A \cap G_1) \cup (A \cap G_2). Например, любой промежуток на R - связное множество. Свойство связного множества: Вместе с парой точек оно содержит отрезок с концами в этих точках.

Пусть A - связное в R. Пусть a, b \in A. Если \forall c \in (a, b): c \in A, свойство верно.

Док-во: G_1 \cup G_2 = R\{c| c \in A}, A = (A \cap G_1) \cup (A \ cap G_2) \Rightarrow A не связно, получили противоречие, c \in A, ч.т.д.

Эти классы определены, т.к: Теорема: Пусть K - компакт в (Y, \rho')( непрерывный образ K есть K). Док-во: Рассмотрим y_n \in f(K) \Rightarrow y_n = f(x_n), x_n \in K. \exists x_{nk} \rightarrow x \in K. По непрерывности f(K): y_{nk} = f(x_{nk}) \rightarrow y = f(x) \in f(K), ч.т.д.

Определение: равномерно - непрерывные отображения