Задача об устойчивом паросочетании

Материал из Викиконспекты
Версия от 13:02, 19 декабря 2016; Misteraverin (обсуждение | вклад) (Обобщения задачи)
Перейти к: навигация, поиск

Основная задача

Есть N мужчин и N женщин. Они обладают следующими особенностями:

  1. Каждый человек оценивает лишь людей противоположного пола (все гетеросексуальны)
  2. Каждый мужчина может отсортировать женщин от "наименее привлекательной" к "наиболее привлекательной", причем его предпочтения не меняются (у каждого мужчины своя функция оценки)
  3. Каждая женщина может отсортировать мужчин от "наименее привлекательного" к "наиболее привлекательному", причем её предпочтения не меняются (у каждой женщины своя функция оценки)


Очевидным образом по такому определению строится полный двудольный граф (левая доля — мужчины, правая — женщины), назовем его МЖ.

Рассмотрим некоторое паросочетание в МЖ. Пара A-b называется неустойчивой (unstable pair), если:

  1. В паросочетании есть пары A-a и B-b (A женат на a, B женат на b)
  2. A считает b привлекательней, чем a
  3. b считает A привлекательней, чем B

(неформально это означает потенциальную возможность измены)


Определение:
Устойчивое паросочетание (stable matching) — паросочетание без неустойчивых пар.


Задача заключается в нахождении полного устойчивого паросочетания по данным спискам предпочтений.

Агоритм Гейла-Шепли

Решение задачи было описано в 1962 году математиками Девидом Гейлом (Университета Брауна) и Ллойдом Шепли (Принстонский университет) в статье «Поступление в колледж и стабильность браков» (College admissions and the stability of marriage) в журнале American Mathematical Monthly. Набор правил, следование которым всегда приводит к образованию стабильных пар, получил название алгоритма Гейла-Шепли или «алгоритма отложенного согласия» (алгоритм предложи-и-откажи).

Интуитивное описание

  1. мужчины делают предложение наиболее предпочитаемой женщине;
  2. каждая женщина из всех поступивших предложений выбирает наилучшее и отвечает на него «может быть» (помолвка), на все остальные отвечает «нет» (отказ)
  3. мужчины, получившие отказ, обращаются к следующей женщине из своего списка предпочтений, мужчины, получившие ответ «может быть», ничего не делают;
  4. если женщине пришло предложение лучше предыдущего, то она прежнему претенденту (которому ранее сказала «может быть») говорит «нет», а новому претенденту говорит «может быть»;
  5. шаги 1-4 повторяются, пока у всех мужчин не исчерпается список предложений, в этот момент женщины отвечают «да» на те предложения «может быть», которые у них есть в настоящий момент.

Описание в псевдокоде

  Изначально все мужчины и все женщины не женаты (не замужем)
  while Существует m <- некоторый свободный мужчина, не делавший предложения всем женщинам
     w <- первая женщина из списка m, которой m еще не делал предложения
     if w свободна
        помечаем m и w помолвленными
     else if w предпочитает m своему "текущему" жениху m'
        помечаем m и w помолвленными, m' — свободным
     else
        w отказывает m

Доказательство корректности

Утверждение (Наблюдение 1):
Мужчины делают предложения женщинам в порядке убывания симпатии
Утверждение (Наблюдение 2):
Как только женщина была помолвлена, она не может стать непомолвленной, она может только улучшить свой выбор (сказать «может быть» более предпочтительному кандидату)

Для начала покажем, что алгоритм завершит свою работу.

Лемма (Лемма 1):
Алгоритм завершается после максимум [math]n^2[/math] итераций цикла while
Доказательство:
[math]\triangleright[/math]
На каждой итерации мужчина делает предложение очередной женщине. Но всего может быть не более [math]n^2[/math] предложений.
[math]\triangleleft[/math]

Теперь покажем, что по завершении алгоритма задача будет решена.

Лемма (Лемма 2):
Все мужчины и женщины будут заняты.
Доказательство:
[math]\triangleright[/math]

1. Предположим, что некоторый мужчина, Ян, не женат по завершении алгоритма.

2. Тогда некоторая женщина, Антонина не замужем

3. По наблюдению 2, Антонине никто не делал предложения

4. Но Ян сделал предложения всем женщинам, т.к. он остался не женат

5. Получаем противоречие

6. Аналогичные утверждения можно повторить и отталкиваясь от того, что не занята некоторая девушка, поэтому предложение доказано
[math]\triangleleft[/math]


Лемма (Лемма 3):
Нет неустойчивых пар.
Доказательство:
[math]\triangleright[/math]

1. Предположим A-b (A, B — мужчины; a, b — женщины; A женат на a, B женат на b) — нестабильная пара в паросочетнаии, найденном алгоритмом Гейла-Шепли

2. Рассмотрим два случая:

2.1. A не делал предложения b

=> A находит a более привлекательной, чем b

=> A-b — устойчивая пара

2.2. A делал предложение b

=> b отказала A (сразу или на одной из последующих итераций)

=> b находит B более привлекательным, чем A

=> A-b — устойчивая пара
[math]\triangleleft[/math]

Асимптотика алгоритма

Не представляет проблемы реализовать внутренний цикл while за [math]O(1)[/math] (с предварительным предпроцессингом не более, чем за [math]O(n^2)[/math]). Таким образом, итоговая асимптотика составляет [math]O(n^2)[/math].

Анализ полученного алгоритмом паросочетания

Агоритм Гейла-Шепли гарантирует, что будет найдено некоторое решение задачи. Но решений может быть более одного. Зададимся вопросом, какими свойствами обладает решение, найденное алгоритмом.

Лемма (Лемма 4 (man-optimality)):
Из всех возможных решений алгоритмом Гейла-Шепли будет найдено решение, наилучшее для мужчин (каждый мужчина получает в жены женщину, наилучшую из всех возможных при условии корректности решения).
Лемма (Лемма 5 (woman-pessimality)):
Из всех возможных решений алгоритмом Гейла-Шепли будет найдено решение, наихудшее для женщин.

Эти две леммы оставим без доказательства, интересющиеся могут обратится к документу http://www.cs.princeton.edu/courses/archive/spring05/cos423/lectures/01stable-matching.pdf (с.5)

Обобщения задачи

Интересно, что данная задача не всегда имеет решение, если допустить однополые пары (устойчивого паросочетания может не быть). (см. [о соседях по комнате])

Случай же, когда у нас есть [math]N[/math] мужчин и [math]M[/math] женщин ([math]N \neq M[/math]) легко сводится к описанной выше задаче. Рассмотрим [math]M \gt N[/math] ([math]M \lt N[/math] аналогично). Добавим [math]M - N[/math] фиктивных мужчин, которые являются наименее привлекательными с точки зрения каждой из женщин. Тогда если в найденном алгоритмом Гейла-Шепли паросочетании некоторая женщина будет замужем за таким фиктивным мужчиной, это будет де-факто означать, что она осталась не замужем.

Также интересна задача о выборе учебного заведения: вместо множества мужчин введем множество университетов, а вместо множества женщин — множество кандидатов, подающих заявления на поступление. Причем в каждом университете есть квота на количество студентов, которое университет может принять. Задача очевидно сводится к основной добавлением [math](K-1)[/math] "филиалов" для каждого университета ([math]K[/math] — квота). И добавлением фиктивного увниерситета (поступление в который означает, что кандидату придется попробовать поступить через год).

Применения в реальной жизни

Задача о нахождении устойчивого паросочетания и её решение имеют множество применений в реальной жизни, лишь некоторые из них:

  • Распределение студентов по коллеждам в США
  • Распределение интернов по больницам
  • Распределение донорских органов по нуждающимся в них людям

Решение данной задачи было отмечено при вручении Нобелевской премии по экономике в 2012 году за «теорию стабильного распределения и практическое применение рыночных моделей». Её получили один из создателей алгоритма, Ллойд Шепли, а также Элвин Рот, во многом развивший исследования Ллойда Шепли и Дэвида Гейла. Сам Гейл не был удостоен премии, вероятно, лишь в силу того, что умер в 2008 году.

Ссылки