Лемма об эквивалентности свойства потока быть минимальной стоимости и отсутствии отрицательных циклов в остаточной сети
НЕТ ВОЙНЕ |
24 февраля 2022 года российское руководство во главе с Владимиром Путиным развязало агрессивную войну против Украины. В глазах всего мира это военное преступление совершено от лица всей страны, всех россиян. Будучи гражданами Российской Федерации, мы против своей воли оказались ответственными за нарушение международного права, военное вторжение и массовую гибель людей. Чудовищность совершенного преступления не оставляет возможности промолчать или ограничиться пассивным несогласием. Мы убеждены в абсолютной ценности человеческой жизни, в незыблемости прав и свобод личности. Режим Путина — угроза этим ценностям. Наша задача — обьединить все силы для сопротивления ей. Эту войну начали не россияне, а обезумевший диктатор. И наш гражданский долг — сделать всё, чтобы её остановить. Антивоенный комитет России |
Распространяйте правду о текущих событиях, оберегайте от пропаганды своих друзей и близких. Изменение общественного восприятия войны - ключ к её завершению. |
meduza.io, Популярная политика, Новая газета, zona.media, Майкл Наки. |
Лемма (о разности потоков): |
Пусть и — потоки равной величины в сети . Тогда можно представить как сумму и нескольких циклов в остаточной сети , т.е. . |
Доказательство: |
Рассмотрим разность потоков декомпозицию. В декомпозиции могут быть только циклы, т.к. наличие путей противоречило бы нулевой величине потока. Таким образом, получили разбиение разности потоков на циклы. Заметим, что , т.е. все циклы принадлежат . | , . Построим ее
Лемма (об эквивалентности свойства потока быть минимальной стоимости и отсутствии отрицательных циклов в остаточной сети): |
Поток — минимальной стоимости среди потоков своей величины в остаточной сети нет циклов отрицательной стоимости. |
Доказательство: |
От противного. Пусть существует — цикл отрицательной стоимости в , — наименьшая остаточная пропускная способность среди рёбер .Пустим по поток . Так как сумма стоимостей по циклу отрицательна и поток по каждому ребру одинаков, то— не минимальный. Противоречие. |
Источники информации
- Ravindra Ahuja, Thomas Magnanti, James Orlin. Network flows (1993)