Простейшие операции
Рассмотрим два формальных степенных ряда [math]A(s) = a_0 + a_1 s + a_2 s^2 + \dots[/math] и [math]B(s) = b_0 + b_1 s + b_2 s^2 + \dots[/math].
Суммой [math]A[/math] и [math]B[/math] называется ряд [math]A(s) + B(s) = (a_0 + b_0) + (a_1 + b_1) s + (a_2 + b_2) s^2 + \dots[/math].
Произведением [math]A[/math] и [math]B[/math] называется ряд [math]A(s)B(s) = a_0 b_0 + (a_0 b_1 + a_1 b_0) s + (a_0 b_2 + a_1 b_1 + a_2 b_0) s^2 + \dots[/math].
Операции сложения и умножения формальных степенных рядов коммутативны и ассоциативны.
Деление
Лемма (деление формальных степенных рядов): |
Пусть [math]A(s) = a_0 + a_1 s + a_2 s^2 + a_3 s^3 + \dots [/math] — формальный степенной ряд, причем [math]A(0) \ne 0[/math]. Тогда существует единственный формальный степенной ряд [math]B(s) = b_0 + b_1 s + b_2 s^2 + b_3 s^3 + \dots [/math], такой что [math]A(s)B(s) = 1[/math], то есть [math]B(s) = A^{-1}(s)[/math]. |
Доказательство: |
[math]\triangleright[/math] |
- Проведем доказательство по индукции. Нам известно, что [math]b_0 = \dfrac{1}{a_0}[/math]. Пусть теперь все коэффициенты ряда [math]B[/math] вплоть до степени [math]n - 1[/math] однозначно определены. Коэффициент при [math]s^n[/math] определяется из условия [math]a_0 b_n + a_1 b_{n - 1} + \dots + a_n b_0 = 0[/math]. Это линейное уравнение на [math]b_n[/math], причем коэффициент [math]a_0[/math] при [math]b_n[/math] отличен от нуля. Такое уравнение имеет единственное решение.
|
[math]\triangleleft[/math] |
Композиция
Пусть [math]A(s) = a_0 + a_1 s + a_2 s^2 + \dots[/math] и [math]B(s) = b_0 + b_1 s + b_2 s^2 + \dots[/math] — два формальных степенных ряда, причем [math]B(0) = b_0 = 0[/math].
Композицией (подстановкой) рядов [math]A[/math] и [math]B[/math] называется формальный степенной ряд [math]A(B(t)) = a_0 + a_1 b_1 t + (a_1 b_2 + a_2 b_1^2) t^2 + (a_1 b_3 + 2 a_2 b_1 b_2 + a_3 b_1^3) t^3 + \dots[/math].
Если, например, [math]B(t) = -t[/math], то [math]A(B(t)) = A(-t) = a_0 -a_1 t + a_2 t^2 - a_3 t^3 + \dots[/math].
Операция подстановки в случае, когда [math]B(0) \ne 0[/math], не определена. (При попытке подставить такой ряд возникает необходимость суммирования бесконечных числовых рядов).
Обратная
Теорема (об обратном формальном степенном ряде): |
Пусть ряд [math]B(t) = b_0 + b_1 t + b_2 t^2 + b_3 t^3 + \dots[/math] таков, что [math]B(0) = b_0 = 0[/math], а [math]b_1 \ne 0[/math]. Тогда существуют такие ряды [math] A(s) = a_1 s + a_2 s^2 + a_3 s^3 + \dots[/math], [math]A(0) = 0[/math] и [math]C(u) = c_1 u + c_2 u^2 + c_3 u^3 + \dots[/math], [math]C(0) = 0[/math], что [math]A(B(t)) = t[/math] и [math]B(C(u)) = u[/math]. При этом, ряды [math]A[/math] и [math]C[/math] единственны.
Определение: |
Производящие функции, соответствующие рядам [math]A[/math] и [math]C[/math], называются соответственно левой и правой обратной к производящей функции, соответствующей ряду [math]B[/math]. |
|
Доказательство: |
[math]\triangleright[/math] |
- Докажем существование и единственность левой обратной функции. Доказательство для правой обратной аналогично.
- Будем определять коэффициенты ряда [math]A[/math] последовательно. Коэффициент [math]a_1[/math] определяется из условия [math]a_1 b_1 = 1[/math], откуда [math]a_1 = \dfrac{1}{b_1}[/math].
- Предположим теперь, что коэффициенты [math]a_1, a_2, \dots, a_n[/math] уже определены. Коэффициент [math]a_{n+1}[/math] определяется из условия [math]a_{n+1} b_1^{n+1} + \dots = 0[/math], где точками обозначен неокторый многочлен от [math]a_1, \dots, a_n[/math] и [math]b_1, \dots, b_n[/math]. Тем самым, условие представляет собой линейное уравнение на [math]a_{n+1}[/math], причем коэффициент [math]b_1^{n+1}[/math] при [math]a_{n+1}[/math] отличен от нуля. Такое уравнение имеет единственное решение, и теорема доказана.
|
[math]\triangleleft[/math] |
См. также
Источники информации
- Ландо С. К., Лекции о производящих функциях. — 3-е изд., испр. — М.: МЦНМО, 2007. — 144с. ISBN 978-5-94057-042-4