Дисперсия случайной величины
Версия от 15:22, 24 декабря 2010; Helm (обсуждение | вклад)
Диспе́рсия случа́йной величины́ — мера разброса данной случайной величины, то есть её отклонения от математического ожидания. Обозначается в русской литературе и в зарубежной. Квадратный корень из дисперсии, равный , называется среднеквадрати́чным отклоне́нием, станда́ртным отклоне́нием или стандартным разбросом. Стандартное отклонение измеряется в тех же единицах, что и сама случайная величина, а дисперсия измеряется в квадратах этой единицы измерения.
Определение
Пусть случайная величина, определённая на некотором вероятностном пространстве. Тогда
—где символ математическое ожидание.
обозначаетЗамечания
- В силу линейности математического ожидания справедлива формула:
Свойства
- Дисперсия любой случайной величины неотрицательна:
- Если дисперсия случайной величины конечна, то конечно и её математическое ожидание;
- Если случайная величина равна константе, то её дисперсия равна нулю: Верно и обратное: если то почти всюду;
- Дисперсия суммы двух случайных величин равна:
- ковариация; , где — их