Дисперсия случайной величины

Материал из Викиконспекты
Версия от 03:54, 6 декабря 2011; Barabanov (обсуждение | вклад) (Отформатировал, добавил пример, переписал определение)
Перейти к: навигация, поиск

Определение

Определение:
Дисперсией случайной величины [math]\xi[/math], определенной на некотором вероятностном пространстве, называется число: [math]D \xi = E(\xi -E\xi)^2 [/math], где символ [math]E[/math] обозначает математическое ожидание.

Дисперсия характеризует разброс случайной величины вокруг ее математического ожидания.

Корень из дисперсии называется средним квадратичным отклонением. Оно используется для оценки масштаба возможного отклонения случайной величины от ее математического ожидания.

Замечания

Свойства

  • Дисперсия любой случайной величины неотрицательна: [math]D\xi \geqslant 0;[/math]
  • Если дисперсия случайной величины конечна, то конечно и её математическое ожидание;
  • Если случайная величина равна константе, то её дисперсия равна нулю: [math]Da = 0.[/math] Верно и обратное: если [math]D\xi=0,[/math] то [math]\xi =E\xi[/math] почти всюду;
  • Дисперсия суммы двух случайных величин равна:
    [math]\! D(\xi \pm \psi) = D\xi + D\psi \pm 2\,\text{Cov}(\xi, \psi)[/math], где [math]\! \text{Cov}(\xi, \psi)[/math] — их ковариация;
  • [math]D (a\xi) = a^2D\xi[/math], где [math]a[/math] - константа. В частности, [math]D(-\xi) = D\xi;[/math]
  • [math]D(\xi+b) = D\xi[/math], где [math]b[/math] - константа.

Пример

Рассмотрим простой пример вычисления математического ожидания и дисперсии.

Найдем математическое ожидание и дисперсию числа очков, выпавших на кубике с первого броска.

[math] \xi(i) = i [/math]

Вычислим математическое ожидание: [math]E\xi = \sum \xi(\omega)p(\omega) = 1\cdot 1/6+2\cdot 1/6 \dots +6\cdot 1/6 = 3.5[/math]

Вычислим дисперсию: [math]D\xi = E\xi^2 - (E\xi)^2 = 1\cdot 1/6+4\cdot 1/6 \dots +36\cdot 1/6 - (3.5)^2 \approx 2.9[/math]

Источники

  • Дискретный анализ, Романовский И. В.