Классы чисел

Материал из Викиконспекты
Версия от 15:00, 17 мая 2018; Senya (обсуждение | вклад) (Аксиомы Пеано)
Перейти к: навигация, поиск

Определение натуральных чисел

Неформальное определение

Определение:
Натура́льные чи́сла (англ. natural numbers, естественные числа) — числа, возникающие естественным образом при счёте (как в смысле перечисления, так и в смысле исчисления).


Существуют два подхода к определению натуральных чисел — числа, используемые при:

  • перечислении (нумеровании) предметов (первый, второй, третий…) — подход, общепринятый в большинстве стран мира (в том числе и в России);
  • обозначении количества предметов (нет предметов, один предмет, два предмета…). Принят в трудах Николя Бурбаки, где натуральные числа определяются как мощность конечных множеств.

Отрицательные и нецелые числа натуральными числами не являются.

Множество всех натуральных чисел принято обозначать знаком [math]\mathbb{N}[/math]. Множество натуральных чисел является бесконечным, так как для любого натурального числа найдётся большее его натуральное число.

Неформальное определение
Определение:
Множество [math]\mathbb N[/math] будем называть множеством натуральных чисел, если зафиксирован некоторый элемент [math] 1\in\mathbb N[/math] (единица) и функция [math]S\colon\mathbb N\to\mathbb N[/math] (функция следования) так, что выполнены следующие условия
  1. [math]1\in\mathbb{N}[/math] ([math]1[/math] является натуральным числом);
  2. Если [math]x\in\mathbb{N}[/math], то [math]S(x)\in\mathbb{N}[/math] (Число, следующее за натуральным, также является натуральным);
  3. [math]\nexists x\in\mathbb{N}\ (S(x) = 1)[/math] ([math]1[/math] не следует ни за каким натуральным числом);
  4. Если [math]S(b)=a[/math] и [math]S(c)=a[/math], тогда [math]b=c[/math] (если натуральное число [math]a[/math] непосредственно следует как за числом [math]b[/math], так и за числом [math]c[/math], то [math]b=c[/math]);
  5. Аксиома индукции. Пусть [math]P(n)[/math] — некоторый одноместный предикат, зависящий от параметра — натурального числа [math]n[/math]. Тогда:
если [math]P(1)[/math] и [math]\forall n\;(P(n)\Rightarrow P(S(n)))[/math], то [math]\forall n\;P(n)[/math]
(Если некоторое высказывание [math]P[/math] верно для [math]n=1[/math] (база индукции) и для любого [math]n[/math] при допущении, что верно [math]P(n)[/math], верно и [math]P(n+1)[/math] (индукционное предположение), то [math]P(n)[/math] верно для любых натуральных [math]n[/math]).


Теоретико-множественное определение

Согласно теории множеств, единственным объектом конструирования любых математических систем является множество.

Таким образом, и натуральные числа вводятся, исходя из понятия множества, по двум правилам:

  • [math]0=\varnothing[/math]
  • [math]S(n)=n\cup\left\{n\right\}[/math]

Числа, заданные таким образом, называются ординальными.

Первые несколько ординальных чисел и соответствующие им натуральные числа:

  • [math]0=\varnothing[/math]
  • [math]1=\left\{\varnothing\right\}[/math]
  • [math]2=\big\{\varnothing,\;\left\{\varnothing\right\}\big\}[/math]
  • [math]3=\Big\{\varnothing,\;\left\{\varnothing\right\},\;\big\{\varnothing,\;\left\{\varnothing\right\}\big\}\Big\}[/math]

Классы эквивалентности этих множеств относительно биекций также обозначают 0, 1, 2, ….

Перечисленные аксиомы отражают наше интуитивные представления о «натуральном ряде».

Определение целых, рациональных, вещественных и комплексных чисел

Определение целых чисел

Определение:
Множество целых чисел (англ. integers) [math]\mathbb{Z}=\{\dots,-2,-1,0,1,2,\dots\}\,[/math] определяется как замыкание множества натуральных чисел [math]\mathbb{N}[/math] относительно арифметических операций сложения [math](+)[/math] и вычитания [math](-)[/math].

Таким образом, сумма, разность и произведение двух целых чисел есть снова целые числа. Оно состоит из натуральных чисел [math](1, 2, 3)[/math], чисел вида -n ([math]n\in\mathbb{N}[/math]) и числа нуль.

Необходимость рассмотрения целых чисел продиктована невозможностью (в общем случае) вычесть из одного натурального числа другое. Целые числа являются кольцом относительно операций сложения и умножения.

Отрицательные числа ввели в математический обиход Михаэль Штифель (1487—1567) в книге «Полная арифметика» (1544), и Никола Шюке (1445—1500).

Определение рациональных чисел

Определение:
Множество рациональных чисел (англ. rational numbers) обозначается [math]\mathbb{Q}[/math] и может быть записано в виде:
[math]\mathbb{Q} = \left\{ \dfrac{m}{n} \mid m \in \mathbb{Z}, n \in \mathbb{N} \right\}.[/math]

Нужно понимать, что численно равные дроби такие как, например, [math]\dfrac{3}{4}[/math] и [math]\dfrac{9}{12}[/math], входят в это множество как одно число. Поскольку делением числителя и знаменателя дроби на их наибольший общий делитель можно получить единственное несократимое представление рационального числа, то можно говорить об их множестве как о множестве несократимых дробей со взаимно простыми целым числителем и натуральным знаменателем:

[math]\mathbb{Q} = \left\{ \dfrac{m}{n} \mid m \in \mathbb{Z}, n \in \mathbb{N}, \gcd(m,n) = 1 \right\}.[/math]

Здесь [math]\gcd(m, n)[/math] — наибольший общий делитель чисел [math]m[/math] и [math]n[/math].

Множество рациональных чисел является естественным обобщением множества целых чисел. Легко видеть, что если у рационального числа [math]a=\dfrac{m}{n}[/math] знаменатель [math]n=1[/math], то [math]a=m[/math] является целым числом. В этой связи возникают некоторые обманчивые предположения. Однако, хотя кажется, что рациональных чисел больше чем целых, и тех и других счётное число (то есть оба они могут быть перенумерованы натуральными числами, причём явно).

Определение вещественных чисел

Определение:
Веще́ственное число (англ. real number) — математическая абстракция, возникшая из потребности измерения геометрических и физических величин окружающего мира, а также проведения таких операций как извлечение корня, вычисление логарифмов, решение алгебраических уравнений.


С точки зрения современной математики, множество вещественных чисел — суть, непрерывное упорядоченное поле. Это определение, или эквивалентная система аксиом, в точности определяет понятие вещественного числа в том смысле, что существует только одно, с точностью до изоморфизма, непрерывное упорядоченное поле.

Множество вещественных чисел имеет стандартное обозначение — R (полужирное «R»), или [math]\mathbb{R}[/math] (blackboard bold «R») от realis — действительный.

Определение комплексных чисел

Определение:
Ко́мпле́ксные чи́сла (англ. complex number) — расширение множества вещественных чисел, обычно обозначается [math]\mathbb{C}[/math]. Любое комплексное число может быть представлено как формальная сумма [math]x+iy[/math], где [math]x[/math] и [math]y[/math] — вещественные числа, [math]i[/math] — мнимая единица (одно из решений уравнения [math]x^2 = -1[/math]).

Комплексные числа образуют алгебраически замкнутое поле — это означает, что многочлен степени [math]n[/math] с комплексными коэффициентами имеет ровно [math]n[/math] комплексных корней, то есть верна основная теорема алгебры. Это одна из основных причин широкого применения комплексных чисел в математических исследованиях.

Операции сложения, вычитания, умножения, деления, извлечения корня

Сложение

Определение:
Сложение — бинарная операция, определённая на некотором множестве, элементы которого мы будем называть числами, при которой двум числовым аргументам (слагаемым) [math]a[/math] и [math]b[/math] сопоставляется итог (сумма), обычно обозначаемый с помощью знака «плюс»: [math]a + b[/math].

Сложение обладает следующими свойствами:

  • коммутативностью (переместительный закон): [math]a + b = b + a[/math]
  • ассоциативностью (сочетательный закон): [math](a + b) + c = a + (b + c)[/math]

Вычитание

Определение:
Вычитание — бинарная операция, обратная сложению.

Таким образом, выражение [math]c - b = a[/math] можно переписать в виде [math]a + b = c[/math].

Умножение

Определение:
В арифметике под умножением понимают краткую запись суммы одинаковых слагаемых. Например, запись [math]5 \cdot 3[/math] обозначает «сложить три пятёрки», то есть является просто краткой записью для [math]5 + 5 + 5[/math]. Результат умножения называется произведением, а умножаемые числа — множителями или сомножителями.


Умножение обладает следующими свойствами:

  • коммутативностью (переместительный закон): [math]a \cdot b = b \cdot a[/math]
  • ассоциативностью (сочетательный закон): [math](a \cdot b) \cdot c = a \cdot (b \cdot c)[/math]
  • существованием обратного элемента: [math]a \cdot 1 = a[/math]
  • дистрибутивностью относительно умножения (распределительный закон): [math]a \cdot (b + c) = a\cdot b + a\cdot c[/math]

Деление

Определение:
Деле́ние (операция деления) — одно из арифметических действий, обратное умножению. Деление — это такая операция, в результате которой получается число (частное), которое при умножении на делитель даёт делимое.

Подобно тому, как умножение заменяет неоднократно повторенное сложение, деление заменяет неоднократно повторенное вычитание.

Рассмотрим, например, такой вопрос:

Сколько раз 3 содержится в 14?

Повторяя операцию вычитания [math]3[/math] из [math]14,[/math] мы находим, что [math]3[/math] «входит» в [math]14[/math] четыре раза, и ещё «остаётся» число [math]2[/math].

В этом случае число [math]14[/math] называется делимым, число [math]3[/math] — делителем, число [math]4[/math] — (неполным) частным и число [math]2[/math] — остатком (от деления).

Результат деления также называют отношением.

Извлечение корня

Определение:
Арифметический корень n-ой степени [math](n > 0)[/math] из числа [math]a[/math] — это такое число [math]b[/math], что [math]b^n = a[/math].

В поле действительных чисел корень имеет только одно решение или ни одного, если это корень чётной степени из отрицательного числа. В поле комплексных чисел корень [math]n[/math]-ой степени имеет [math]n[/math] решений. Обозначается символом [math]\sqrt[n]{\ }[/math].

Арифметический корень 2-ой степени называется квадратным корнем и может записываться без указания степени: [math]\sqrt{\ }[/math]. Арифметический корень 3-ей степени называется кубическим корнем.

См. также


Источники информации