Базовые определения и формализм
Версия от 01:48, 1 октября 2018; Anverk (обсуждение | вклад)
Содержание
Определения
Базовые определения
Определение: |
Исполнение системы
| это пара , где:
Определение: |
Пусть Обозначение: | Тогда говорят, что параллельна , если
Определение: |
Система Говорим, что система имеет свойство , если каждое исполнение системы имеет свойство | это множество всех возможных исполнений.
Определение: |
Модель глобального времени определим так, что это модель, в которой в качестве операции используется временной интервал: Замечание: глобального времени не существует из-за физических ограничений, поэтому в доказательствах такая модель не используется, но помогает при визуализации различных исполнений | причём . Зададим в этой модели отношение следующим образом: . Неформально это означает, что вход в функцию, выполняющую операцию , был осуществлён строго позже, чем был получен результат работы функции, выполняющей операцию .
Определение: |
Исполнение системы | называется последовательным, если . То есть, если все операции линейно-упорядочены отношением "произошло до".
Конфликты и гонки данных
Определение: |
Две операции над одной переменной, одна из которых это запись, называются конфликтующими. Соответственно, бывают read-write и write-write конфликты. |
Определение: |
Если две конфликтующие операции произошли параллельно, то такая ситуация называется гонка данных (англ. data race) Замечание: наличие гонки данных является свойством конкретного исполнения. |
Определение: |
Программа называется корректно синхронизированной, если в любом допустимом исполнении нет гонок данных. |
Правильное исполнение
Определение: |
Сужение исполнения Обозначение: . Формально | на поток исполнение, в котором остались только операции, происходящие в потоке .
Определение: |
Исполнение называется правильным (англ. well-formed), если его сужение на каждый поток | является последовательным.
Определение: |
Объединение всех сужений на потоки называется программным порядком (англ. program order или po). |
Определение: |
Сужение исполнения Обозначение: . Формально Замечание: в правильном исполнении сужение на объекты не всегда является последовательным | на объект исполнение, в котором остались только операции, взаимодействующие с объектом .
Условия согласованности
Определение: |
Последовательное исполнение является допустимым (англ. legal), если выполнены последовательные спецификации всех объектов. |
Определение: |
Исполнение последовательно согласовано, если можно сопоставить эквивалентное ему (состоящее из тех же событий и операций) допустимое последовательное исполнение, которое сохраняет программный порядок, то есть порядок операций на каждом потоке. Последовательная согласованность на каждом объекте не влечёт последовательную согласованность исполнения |
Определение: |
Исполнение | линеаризуемо, если существует эквивалентное ему допустимое последовательное исполнение , называемое линеаризацией, и верно что , то есть сохраняется отношение "произошло до".
Декомпозиция исполнения
Определение: |
Определим декомпозицию исполнения как пятёрку
| , где
Определение: |
Определим произошло до на операциях: |
Свойства линеаризуемости
Определение: |
Пусть дана декомпозиция
| . Тогда определим точки линеаризации как функцию такую, что:
Утверждение (эквивалентное определение линеаризуемости): |
Пусть дана декомпозиция .
Исполнение является линеаризуемым тогда и только тогда, когда верны два условия:
|
Пусть есть точки линеаризации , полный порядок над ними. Требуется найти линеаризацию . Определим как , так как они по определению линеаризации должны быть эквивалентны, а определим, воспользовавшись вторым условием предпосылки. Докажем корректность такой линеаризации, то есть что :
Добавим события в такие, что и для которых выполнено требование из . Эти точки и будут точками линеаризации. Итак, построены точки линеаризации, которые, очевидно, сохраняют линеаризацию по их построению. |
Следствие 1. Для модели глобального времени эта теорема верна в обе стороны: действительно дополнительное требование выполняется, так как каждая операция в нём является непрерывным множеством.
Следствие 2. Чтобы среди точек линеаризации был порядок, согласованный с семантикой низкоуровневых операций, достаточно чтобы операции низкого уровня были атомарны (линеаризуемы)