Задача: |
Даны матроиды [math]M_1 = \langle S, \mathcal{I}_1 \rangle[/math] и [math]M_2 = \langle S, \mathcal{I}_2 \rangle[/math]. Необходимо найти максимальное по мощности независимое множество в объединении [math]M_1[/math] и [math]M_2[/math]. |
Определение: |
Объединение матроидов [math]M[/math] = [math]\langle S,\mathcal{I} \rangle[/math] = [math]\bigcup\limits_{k=1}^{n}[/math] [math]M_i[/math], где [math]M_i[/math] = [math]\langle S,\mathcal{I}_i \rangle[/math] |
Алгоритм
Определим граф замен: для каждого [math]M_i[/math] построим двудольный ориентированный граф [math]D_{M_i}(I_i)[/math], где [math]I_i \in \mathcal{I}_i[/math], такой что в левой доле находятся вершины из [math]I_i[/math], а в правой — вершины из [math]S \setminus I_i[/math]. Построим ориентированные ребра из [math]y \in I_i[/math] в [math]x \in S \setminus I_i[/math], при условии, что [math](I_i \setminus y) \cup x \in \mathcal{I}_i[/math].
Объединим все [math]D_{M_i}(I_i)[/math] в один граф [math]D[/math], который будет суперпозицией ребер из этих графов. Пусть для каждого [math]i:[/math] [math]F_i[/math] - множество вершин из [math]S_i \setminus I_i[/math], которые могут быть добавлены в [math]I_i[/math] таким образом, что [math]I_i + x[/math] независимое множество в [math]M_i[/math]. Или формально:
[math]F_i = \{ x \in S \setminus I_i : I_i + x \in \mathcal{I}_i \}[/math]. [math]F[/math] = [math]\bigcup\limits_{k=1}^{n}[/math] [math]F_i[/math]
Нам известно, что объединение матроидов — матроид. При поиске базы матроида используется жадный алгоритм. Иначе говоря, на каждом шаге мы выбираем элемент не из текущего множества, который оставит построить граф замен [math]D_{M_i}(I_i)[/math]текущее множество независимым (следующая теорема отвечает на вопрос, как представить это в графе). Здесь мы обозначим текущее множество как [math]I[/math].
Тогда нужно найти такой элемент [math]s \in S \setminus I[/math], что [math]I + s[/math] — снова независимо.
Все наши кандидаты находятся в [math]S \setminus I[/math]. Если мы найдем путь из [math]F[/math] в [math]S \setminus I[/math], то элемент [math]s[/math], которым путь закончился, можно будет добавить в [math]I[/math].
То есть шаг жадного алгоритма заключается в создании нового [math]D[/math] и поиске такого пути.
Псевдокод
[math]J[/math] = [math]\emptyset[/math]
for [math]i \leftarrow 0[/math] to [math]n - 1[/math]
построить граф замен [math]D_{M_i}(I_i)[/math]
if [math]I_i + x \in \mathcal{I}_i[/math]
[math]J \leftarrow I_i + x[/math]
Теорема: |
Для любого [math]s \in S \setminus I[/math] имеем [math]I + s \in J \Leftrightarrow [/math] существует ориентированный путь из [math]F[/math] в [math]s[/math] по ребрам [math]D[/math]. |
Доказательство: |
[math]\triangleright[/math] |
[math]\Leftarrow[/math]
Пусть существует путь из [math]F[/math] в [math]s[/math] и [math]P[/math] — самый короткий такой путь. Запишем его вершины как {[math]s_0, s_1, ... s_p[/math]}. [math]s_0 \in F[/math], так что не умаляя общности можно сказать, что [math]s_0 \in F_1[/math]. Для каждого [math]j = 1...k[/math] определим множество вершин [math]S_j =[/math] {[math]s_i, s_{i+1}:(s_i, s_{i+1}) \in D_{M_j}(I_j)[/math]}, где [math]i[/math] пробегает от [math]0[/math] до [math]p - 1[/math].
Положим, что [math]I'_1 = (I_1 \oplus S_1) \cup \{s_0\}[/math], для всех [math]j \gt 1[/math] положим [math]I'_j = (I_j \oplus S_j)[/math]. Ясно, что [math]\cup _j I'_j = I + s[/math]. Для того, чтобы показать независимость [math]I + s[/math] в объединении матроидов нужно показать, что [math]I'_j \in J_j[/math] для всех [math]j[/math]. Заметим, что так как мы выбирали путь [math]P[/math] таким, что он будет наименьшим, для каждого [math]j \gt 1[/math] существует единственное паросочетание между элементами, которые мы добавляли и удаляли, чтобы сконструировать [math]I'_j = I_j \oplus S_j[/math]. Так как паросочетание единственно, [math]I'_j \in J_j[/math]. Аналогично [math]s_0 \in F_1[/math], значит [math]I'_1 \in J_1[/math]. Следовательно [math]I + s[/math] независимо в объединении матроидов.
[math]\Rightarrow[/math]
Пусть нет пути из [math]F[/math] в [math]s[/math] по ребрам [math]D[/math]. Тогда пусть существует множество [math]T[/math], состоящее из вершин [math]D[/math], из которого мы можем достичь [math]s[/math] : [math]T = \{x, \exists x \leadsto s\}[/math] по допущению [math]F\cap T = \varnothing[/math]. Утверждается, что для всех [math]i : |I_i \cap T| = r_i(T)[/math](что означает, что [math]I_i \cap T[/math] — максимальное подмножество [math]T[/math], независимое в [math]M_i[/math]).
Предположим, что это не так. [math]|I_i \cap T| = r_i(I_i\cap T) \le r_i(T)[/math], это возможно только если [math]|I_i \cap T| \lt r_i(T)[/math]. Значит существует такой [math]x \in T \cap (S \setminus I_i)[/math], для которого [math](I_i \cap T) + x \in J_i[/math]. Но [math]x \notin F[/math] (по предположению вначале доказательства), значит [math]I_i + x \notin J_i[/math]. Из этого следует, что [math]I_i + x[/math] содержит единственный цикл. Значит существует [math]y \in I_i - T[/math], такой что [math]I_i + x - y \in J_i[/math]. Получается, что [math](y, x)[/math] — ребро в [math]D_{M_i}(I_i)[/math] и оно содержит этот [math]y \in T[/math], что противоречит тому как был выбран [math]y \in I_i \setminus T[/math]. Следовательно для всех [math]i[/math] нам известно : [math]|I_i \cap T| = r_i(T)[/math].
У нас есть [math]s \in T[/math] и [math](I + s) \cap T = (\cup I_i + s)\cap T = \cup(I_i \cap T) + s[/math]. Из определния функции ранга объединения матроидов имеем :
[math]r_M(I + s) \le (|(I + s)\setminus T| + \sum\limits_{k=1}^{n}r_i(T))[/math]
[math]r_M(I + s) \le |(I + s)\setminus T| + \sum\limits_{k=1}^{n} |I_i \cap T| = |I\setminus T| + \sum\limits_{k=1}^{n} |I_i \cap T| = |I| \lt |I + s|[/math]
и значит [math](I + s) \notin J[/math] — противоречие. |
[math]\triangleleft[/math] |
См. также
Источники информации
Michel X. Goemans. Advanced Combinatorial Optimization. Lecture 13