Векторные часы

Материал из Викиконспекты
Перейти к: навигация, поиск
НЕТ ВОЙНЕ

24 февраля 2022 года российское руководство во главе с Владимиром Путиным развязало агрессивную войну против Украины. В глазах всего мира это военное преступление совершено от лица всей страны, всех россиян.

Будучи гражданами Российской Федерации, мы против своей воли оказались ответственными за нарушение международного права, военное вторжение и массовую гибель людей. Чудовищность совершенного преступления не оставляет возможности промолчать или ограничиться пассивным несогласием.

Мы убеждены в абсолютной ценности человеческой жизни, в незыблемости прав и свобод личности. Режим Путина — угроза этим ценностям. Наша задача — обьединить все силы для сопротивления ей.

Эту войну начали не россияне, а обезумевший диктатор. И наш гражданский долг — сделать всё, чтобы её остановить.

Антивоенный комитет России

Распространяйте правду о текущих событиях, оберегайте от пропаганды своих друзей и близких. Изменение общественного восприятия войны - ключ к её завершению.
meduza.io, Популярная политика, Новая газета, zona.media, Майкл Наки.


Определение:
Векторные часы — это функция $VC(e) \colon E \to \mathbb R^n$ (из событий в вектор константного размера) такая, что для любых двух событий $e$ и $f$ следующие утверждения равносильны:
  • $e \to f$ ($e$ произошло-до $f$)
  • $VC(e) < VC(f)$ (все компоненты $VC(e)$ меньше всех компонент $VC(f)$)


Алгоритм векторных часов можно построить из логических часов Лампорта, если попросить каждый процесс помнить счётчики всех процессов, а не только свой:

  • каждый поток имеет целочисленный $n$-мерный вектор ($n$ — количество потоков), проинициализированный нулями.
  • в случае внутреннего события счётчик текущего процесса увеличивается на 1;
  • перед отправкой сообщения внутренний счётчик, соответствующий текущему процессу, увеличивается на 1, и вектор целиком прикрепляется к сообщению;
  • при получении сообщения счётчик текущего процесса увеличивается на 1, далее значения в текущем векторе выставляются в покомпонентный максимум от текущего и полученного.

Значением вышеупомянутой функции на событии является значение переменной, принадлежащей тому же потоку, что и событие. Стоит заметить, что векторное время уникально для каждого события.

Оказывается, что если в распределенной системе ввести частичный порядок предшествования на событиях, то имеет место следующее утверждение:
a предшествует b, тогда и только тогда, когда логическое время векторных часов события a меньше логического времени события b (при этом вектор x меньше вектора y покомпонентно с одной строгостью, т.е если для каждой компоненты выполяется [math]x_i \le y_i[/math] и [math]\exists j: x_j \lt y_j[/math]).

Важным свойством векторных часов в распределенных системах с введенным частичным порядком предшествования оказывается то, что при сравнении векторов времени двух событий достаточно сравнивать только компоненты процессов, которым эти события принадлежат.