Теорема о подгруппах циклической группы

Материал из Викиконспекты
Перейти к: навигация, поиск
НЕТ ВОЙНЕ

24 февраля 2022 года российское руководство во главе с Владимиром Путиным развязало агрессивную войну против Украины. В глазах всего мира это военное преступление совершено от лица всей страны, всех россиян.

Будучи гражданами Российской Федерации, мы против своей воли оказались ответственными за нарушение международного права, военное вторжение и массовую гибель людей. Чудовищность совершенного преступления не оставляет возможности промолчать или ограничиться пассивным несогласием.

Мы убеждены в абсолютной ценности человеческой жизни, в незыблемости прав и свобод личности. Режим Путина — угроза этим ценностям. Наша задача — обьединить все силы для сопротивления ей.

Эту войну начали не россияне, а обезумевший диктатор. И наш гражданский долг — сделать всё, чтобы её остановить.

Антивоенный комитет России

Распространяйте правду о текущих событиях, оберегайте от пропаганды своих друзей и близких. Изменение общественного восприятия войны - ключ к её завершению.
meduza.io, Популярная политика, Новая газета, zona.media, Майкл Наки.
Теорема (о подгруппах циклической группы):
Любая подгруппа [math]H[/math] циклической группы [math]G[/math] сама является циклической группой.
Доказательство:
[math]\triangleright[/math]
Все элементы группы [math]G[/math] с образующей [math]a[/math] представимы в виде [math]a^n[/math]. Предположим, что [math]H[/math] нетривиальна. Возьмем наименьшее ненулевое [math]n[/math], что [math]a^n\in H[/math] и положим [math]a^n=b[/math]. Пусть теперь есть некоторое [math]c\in H[/math]. Раз [math]c\in H\subseteq G[/math], то [math]c=a^m[/math] для некоторого [math]m[/math]. Имеем [math]m=k\cdot n+r[/math], где [math]r\lt n[/math]. Вместе с [math]b[/math] и [math]c[/math] [math]H[/math] содержит и [math]b^{-k}\cdot c=a^r[/math]. Поэтому если [math]r\neq 0[/math], то [math]n[/math] — не минимальное ненулевое число, что [math]a^n\in H[/math]. Таким образом, необходимо [math]r=0[/math]. Значит, все элементы [math]H[/math] представимы в виде [math]b^m[/math] для некоторого [math]m[/math], что и означает, что [math]H[/math] — циклическая группа.
[math]\triangleleft[/math]

Ссылки

Нормальное доказательство