Подсчет деревьев
Эта статья находится в разработке!
Описание всех используемых далее комбинаторных объектов можно найти в статье "конструирование комбинаторных объектов и их подсчёт".
Содержание
Непомеченные деревья
Подвешенные неполные двоичные деревья
Пусть
— количество таких деревьев с вершинами. — множество всех пар из данных деревьев. Чтобы получить двоичное дерево из вершин, достаточно взять вершину и подвесить к ней левого и правого сына с суммарным количеством вершин . Тогда:- число Каталана. , где — -ое
Помеченные деревья
Теорема (Формула Кэли): |
Число помеченных деревьев порядка равно . |
Доказательство: |
Можно доказать формулу двумя способами. Первый способ. Так как между помеченными деревьями порядка Код Прюфера), то количество помеченных деревьев совпадает с количеством последовательностей длины из чисел от до . и последовательностями длины из чисел от до существует биекция (Второй способ. С помощью матрицы Кирхгофа для полного графа на вершинах. Число помеченных деревьев порядка , очевидно, равно числу остовов в полном графе , которое есть по следствию теоремы Кирхгофа. |
Подвешенные непомеченные деревьея с порядком на детях
Пусть
— количество таких деревьев с вершинами. — множество всех последовательностей из данных деревьев. — количество последовательностей с суммарным количество вершин . Чтобы получить дерево из вершин, достаточно взять вершину, и подвесить к ней последовательность деревьев с суммарным количеством вершин . Тогда:- .
- число Каталана. , где — -ое
Подвешенные непомеченные деревья без порядка на детях
Пусть
— количество таких деревьев с вершинами. — множество всех лесов из данных деревьев, так как лес можно интерпретировать как мультимножество из деревьев. — количество лесов с суммарным количество вершин . — количество таких лесов из вершин, что деревья в них содержат не более чем вершин. Чтобы получить дерево из вершин, достаточно взять вершину и подвесить к ней лес деревьев с суммарным количеством вершин . Тогда:- .
- .
- .
Количество таких деревьев с [1]
вершинами образуют последовательностьСм.также
- Лемма Бёрнсайда и Теорема Пойа
- Числа Каталана
- Генерация комбинаторных объектов в лексикографическом порядке