Подсчет деревьев
НЕТ ВОЙНЕ |
24 февраля 2022 года российское руководство во главе с Владимиром Путиным развязало агрессивную войну против Украины. В глазах всего мира это военное преступление совершено от лица всей страны, всех россиян. Будучи гражданами Российской Федерации, мы против своей воли оказались ответственными за нарушение международного права, военное вторжение и массовую гибель людей. Чудовищность совершенного преступления не оставляет возможности промолчать или ограничиться пассивным несогласием. Мы убеждены в абсолютной ценности человеческой жизни, в незыблемости прав и свобод личности. Режим Путина — угроза этим ценностям. Наша задача — обьединить все силы для сопротивления ей. Эту войну начали не россияне, а обезумевший диктатор. И наш гражданский долг — сделать всё, чтобы её остановить. Антивоенный комитет России |
Распространяйте правду о текущих событиях, оберегайте от пропаганды своих друзей и близких. Изменение общественного восприятия войны - ключ к её завершению. |
meduza.io, Популярная политика, Новая газета, zona.media, Майкл Наки. |
Описание всех используемых далее комбинаторных объектов можно найти в статье "конструирование комбинаторных объектов и их подсчёт".
Непомеченные деревья
Бинарные деревья
Утверждение: |
Число непомеченных бинарных деревьев число Каталана). равно ( -ое |
Устройство бинарного дерева в терминах комбинаторных классов выражается следующим образом
|
Утверждение: |
Производящая функция числа непомеченных полных бинарных деревьев: . |
Устройство бинарного дерева в терминах комбинаторных классов выражается следующим образом |
Подвешенные непомеченные деревьея с порядком на детях
Пусть
— количество таких деревьев с вершинами. — множество всех последовательностей из данных деревьев. — количество последовательностей с суммарным количество вершин . Чтобы получить дерево из вершин, достаточно взять вершину, и подвесить к ней последовательность деревьев с суммарным количеством вершин . Тогда:- .
- число Каталана. , где — -ое
Подвешенные непомеченные деревья без порядка на детях
Пусть
— количество таких деревьев с вершинами. — множество всех лесов из данных деревьев, так как лес можно интерпретировать как мультимножество из деревьев. — количество лесов с суммарным количество вершин . — количество таких лесов из вершин, что деревья в них содержат не более чем вершин. Чтобы получить дерево из вершин, достаточно взять вершину и подвесить к ней лес деревьев с суммарным количеством вершин . Тогда:- .
- .
- .
Количество таких деревьев с [1].
вершинами образуют последовательность A000081Помеченные деревья
Определение: |
Помеченное дерево c | вершинами - дерево c вершинами, вершинам которого взаимно однозначно соответствуют числа от 1 до n.
Теорема (Кэли): |
Число помеченных деревьев с вершинами равно . |
Доказательство: |
Можно доказать формулу двумя способами. Первый способ.
Второй способ.
|
Утверждение: |
Число помеченных корневых деревьев с вершинами есть . |
Данное утверждение является следствием теоремы Кэли. |
Подвешенные помеченные деревья с порядком на детях
Утверждение: |
Число помеченных корневых деревьев с вершинами с порядком на детях есть . |
Как и в непомеченном случае, структура объекта остается неизменной: Производящая функция будет иметь вид: |
Подвешенные помеченные деревья без порядка на детях
Утверждение: |
Как и в непомеченном случае, структура объекта остается неизменной: .Производящая функция будет иметь вид: |
В предыдущем пункте порядок на детях однозначно задавал, как будут располагаться поддеревья, теперь же подсчёт оказывается сложнее:
В данном примере в А два представленных дерева — одинаковые, а в B — разные.
Для нет однозначно выражаемой формулы. Однако, можно получить, раскрыв экспоненту до -ого члена, а именно
Более подробное объяснение происходящего можно посмотреть в лекции[2].
См.также
- Конструирование комбинаторных объектов и их подсчёт
- Лемма Бёрнсайда и Теорема Пойа
- Числа Каталана
- Генерация комбинаторных объектов в лексикографическом порядке
Литература
- ↑ Number of unlabeled rooted trees with n node
- ↑ Станкевич А.С. Лекции по дискретной математике // Помеченные объекты и экспоненциальные ПФ, 2020. URL: https://youtu.be/6qQQj6G8-tA?t=4391