Отношение порядка

Материал из Викиконспекты
Версия от 19:41, 4 сентября 2022; Maintenance script (обсуждение | вклад) (rollbackEdits.php mass rollback)
(разн.) ← Предыдущая | Текущая версия (разн.) | Следующая → (разн.)
Перейти к: навигация, поиск

Определения

Определение:
Бинарное отношение [math]R[/math] на множестве [math]X[/math] называется отношением частичного порядка (англ. partial order relation), если оно обладает следующими свойствами:

Множество [math]X[/math], на котором введено отношение частичного порядка, называется частично упорядоченным.

Отношение частичного порядка также называют нестрогим порядком (англ. non-strict order).

Определение:
Бинарное отношение [math]R[/math] на множестве [math]X[/math] называется строгим отношением частичного порядка (англ. strict order relation), если оно обладает следующими свойствами:


Определение:
Бинарное отношение [math]R[/math] на множестве [math]X[/math] называется отношением линейного порядка (англ. total order relation), если оно является отношением частичного порядка и обладает следующим свойством: [math]\forall a \in X \forall b \in X[/math] либо [math]aRb[/math], либо [math]bRa[/math].

Множество [math]X[/math], на котором введено отношение линейного порядка, называется линейно упорядоченным (англ. total order).

Определение:
Бинарное отношение [math]R[/math] на множестве [math]X[/math] называется отношением полного порядка (англ. well-order relation), если оно является отношением линейного порядка и обладает следующим свойством: [math]\forall Y \subset X \exists a \in Y \forall b \in Y: aRb[/math].

Множество [math]X[/math], на котором введено отношение полного порядка, называется полностью упорядоченным (англ. well-order).

Отношение нестрогого порядка обозначают символом [math]\leqslant[/math]. Запись вида [math]a \leqslant b[/math] читают как «[math]a[/math] меньше либо равно [math]b[/math]».

Отношение строгого порядка обозначают символом [math]\lt [/math]. Запись вида [math]a \lt b[/math] читают как «[math]a[/math] меньше [math]b[/math]».

Примеры

  • На множестве вещественных чисел отношения «больше» и «меньше» являются отношениями строгого порядка, а «больше или равно» и «меньше или равно» — нестрогого, причем линейного порядка, но не полного.
  • Отношение «является делителем» на множестве натуральных чисел является отношением частичного порядка.
  • Отношение «меньше или равно» является отношением полного порядка на множестве натуральных чисел.
  • Отношение «лексикографически не меньше» на множестве всех возможных слов, составленных из букв русского алфавита, является отношением полного порядка.
  • Отношение «состоит в подчинении» на множестве работников компании является отношением нестрогого порядка.
  • Можно рассмотреть отношение «не младше» на множестве некоторой группы людей. Для соблюдения всех тонкостей скажем, что их даты рождения различны. Это отношение транзитивно (если человек A не младше человека B, а человек B не младше человека C, то человек A не младше человека C), антисимметрично (если человек A не младше человека B и человек B не младше человека A, то это один и тот же человек) и рефлексивно (каждый человек не младше самого себя). Из этого следует, что данное отношение является отношением частичного линейного порядка.
  • Отношение «является делителем» на множестве целых чисел не является отношением частичного порядка. Это легко видеть на следующем примере: [math] 2 [/math] делится на [math] -2 [/math], а [math] -2 [/math] делится на [math] 2 [/math]. Однако [math] 2 \neq -2[/math].
  • Отношение «больше или равно по модулю» на множестве комплексных чисел не является отношением порядка. Из равенства модулей не следует равенство самих чисел, тем самым нарушается антисимметричность. Это демонстрирует данный пример: модули комплексных чисел [math] 3 + 4i [/math] и [math] 4 + 3i [/math] равны, но сами числа разные.

См. также

Источники информации