Определение матроида

Материал из Викиконспекты
Перейти к: навигация, поиск

Аксиоматическое определение

Определение:
Матроид — пара [math](X,I)[/math], где [math]X[/math] — конечное множество, называемое носителем матроида, а [math]I[/math] — некоторое множество подмножеств [math]X[/math], называемое семейством независимых множеств , то есть [math]I \subset 2^X [/math]. При этом должны выполняться следующие условия:
  1. [math]\varnothing \in I[/math]
  2. Если [math]A \in I [/math] и [math] B \subset A[/math], то [math]B \in I[/math]
  3. Если [math]A,B \in I[/math] и [math]|A| \gt |B|[/math], то [math] \exists \, x \in A \setminus B[/math] такой, что [math]B \cup \{x\} \in I[/math]


Определение:
База матроида — максимальное по включению независимое множество.


Определение:
Зависимое множество — подмножество носителя матроида, не являющееся независимым.


Определение:
Цикл матроида — минимальное по включению зависимое множество.


См. также

Литература

Асанов М. О., Баранский В. А., Расин В. В. - Дискретная математика: Графы, матроиды, алгоритмы. ISBN 978-5-8114-1068-2