Алгоритм
- Для заданного взвешенного графа [math]G = (V, E)[/math] алгоритм находит кратчайшие пути из заданной вершины [math] s [/math] до всех остальных вершин.
- В случае когда в графе [math] G [/math] содержатся отрицательные циклы достижимые из [math] s [/math] алгоритм сообщает, что кратчайших путей не существует.
Псевдокод
Bellman_Ford(G, s)
for для каждой [math]v \in V[G][/math]
[math] d[v] \leftarrow \mathcal {1} [/math]
[math]d[s] \leftarrow 0 [/math]
for [math] i \leftarrow 1 [/math] to [math] \mid V[G] \mid - 1 [/math]
for для каждого ребра [math] (u, v) \in E[G] [/math]
if [math]d[v] \gt d[u] + \omega(u, v) [/math]
then [math]d[v] \leftarrow d[u] + \omega(u, v)[/math]
for для каждого ребра [math] (u, v) \in E[G] [/math]
if [math]d[v] \gt d[u] + \omega(u, v) [/math]
then return [math] \mathit false[/math]
return [math] \mathit true [/math]
Корректность алгоритма Форда-Беллмана
- В этом алгоритме используется релаксация, в результате которой [math]d[v][/math] уменьшается до тех пор, пока не станет равным [math]\delta(s, v)[/math].
- [math]d[v][/math] - оценка веса кратчайшего пути из вершины [math]s[/math] в каждую вершину [math]v \in V[/math].
- [math]\delta(s, v)[/math] - фактический вес кратчайшего пути из [math]s[/math] в вершину [math]v[/math].
Лемма: |
Пусть [math]G = (V, E) [/math] — взвешенный ориентированный граф, [math] s [/math] — стартовая вершина. Тогда после завершения [math] \mid V[G] \mid - 1 [/math] итераций цикла для всех вершин, достижимых из [math]s[/math], выполняется равенство [math] d[v] = \delta (s, v) [/math]. |
Доказательство: |
[math]\triangleright[/math] |
- Рассмотрим произвольную вершину [math]v[/math], достижимую из [math]s[/math].
- Пусть [math]p = \langle v_0,..., v_{k} \rangle [/math], где [math]v_0 = s[/math], [math]v_{k} = v[/math] — кратчайший ациклический путь из [math] s [/math] в [math] v [/math].
- Путь [math] p [/math] содержит не более [math] \mid V[G] \mid - 1 [/math] ребер. Поэтому [math]k \le \mid V[G] \mid - 1[/math].
- На каждой из [math] \mid V[G] \mid - 1 [/math] итераций цикла for релаксируются [math] \mid E[G] \mid [/math] ребер.
- Среди ребер, прорелаксированных во время i-й итерации, находится ребро [math] (v_{i-1}, v_{i}) [/math].
- Поэтому выполнены равенства [math]d[v] = d[v_{k}] = \delta (s, v_{k}) = \delta (s, v))[/math].
|
[math]\triangleleft[/math] |
Теорема: |
Пусть [math]G = (V, E) [/math] - взвешенный ориентированный граф, [math] s [/math] — стартовая вершина. Если граф [math] G [/math] не содержит отрицательных циклов, достижимых из вершины [math] s [/math], то алгоритм возвращает [math] true [/math] и для всех [math] v \in V[G] \ d[v] = \delta (s, v)[/math]. Если граф [math] G [/math] содержит отрицательные циклы, достижимые из вершины [math] s [/math], то алгоритм возвращает [math] false [/math] |
Доказательство: |
[math]\triangleright[/math] |
- Пусть граф [math] G [/math] не содержит отрицательных циклов, достижимых из вершины [math] s [/math].
- Тогда если вершина [math] v [/math] достижима из [math] s [/math], то по лемме [math] d[v] = \delta (s, v)[/math].
- Если вершина [math] v [/math] не достижима из [math] s [/math], то [math] d[v] = \delta (s, v) = \mathcal {1}[/math] из несуществования пути.
- Теперь докажем, что алгоритм вернет значение [math] true [/math].
- После выполнения алгоритма верно, что для всех [math] (u, v) \in E[G], \ d[v] = \delta (s, v) \leqslant \delta (s, u) + \omega (u,v) = d[u] + \omega (u,v)[/math], значит ни одна из проверок не вернет значения [math] false [/math].
- Пусть граф [math] G [/math] содержит отрицательный цикл [math] c = {v_0,...,v_{k}} [/math], где [math] v_0 = v_{k} [/math], достижимый из вершины [math] s [/math].
- Тогда [math]\sum\limits_{i=1}^{k} {\omega (v_{i-1}, v_{i})} \lt 0 [/math].
- Предположим, что алгоритм возвращает [math] true [/math], тогда для [math] i = 1,...,k [/math] выполняется [math] d[v_{i}] \leqslant d[v_{i-1}] + \omega (v_{i-1}, v_{i}) [/math].
- Просуммируем эти неравенства по всему циклу: [math]\sum\limits_{i=1}^{k} {d[v_{i}]} \leqslant \sum\limits_{i=1}^{k} {d[v_{i-1}]} + \sum\limits_{i=1}^{k} {\omega (v_{i-1}, v_{i})} [/math].
- Из того, что [math] v_0 = v_{k} [/math] следует, что [math] \sum\limits^{k}_{i=1} {d[v_{i}]} = \sum \limits_{i=1}^{k} {d[v_{i - 1}]} [/math].
- Получили, что [math] \sum \limits_{i=1}^{k} {\omega (v_{i-1}, v_{i})} \ge 0 [/math], что противоречит отрицательности цикла [math] c [/math].
|
[math]\triangleleft[/math] |
Сложность
- Инициализация занимает [math] \Theta (V) [/math] времени, каждый из [math] \mid V[G] \mid - 1 [/math] проходов требует [math] \Theta (E) [/math] времени, обход по всем ребрам для проверки наличия отрицательного цикла занимает [math]O(E)[/math] времени.
Итого алгоритм Беллмана-Форда работает за [math]O(V E)[/math] времени.
Литература
- Кормен, Т., Лейзерсон, Ч., Ривест, Р., Штайн, К. Алгоритмы: построение и анализ / пер. с англ. — изд. 2-е — М.: Издательский дом «Вильямс», 2009. — с.672 — 676. — ISBN 978-5-8459-0857-5.