Коды Грея для перестановок
код Грея для перестановки при n = 2
2 1 1 2 |
код Грея для перестановки при n = 3
3 2 1 2 3 1 2 1 3 1 2 3 1 3 2 3 1 2 |
код Грея для перестановки при n = 4
4 3 2 1 3 4 2 1 3 2 4 1 3 2 1 4 2 3 1 4 2 3 4 1 2 4 3 1 4 2 3 1 4 2 1 3 2 4 1 3 2 1 4 3 2 1 3 4 1 2 3 4 1 2 4 3 1 4 2 3 4 1 2 3 4 1 3 2 1 4 3 2 1 3 4 2 1 3 2 4 3 1 2 4 3 1 4 2 3 4 1 2 4 3 1 2 |
<wikitex>
Содержание
Определение
Коды Грея для перестановок — это такое упорядочение перестановок, что соседние перестановки отличаются только элементарной транспозицией.
Элементарная транспозиция — транспозиция двух соседних элементов (обмен местами двух соседних элементов). Далее будем называть элементарную транспозицию просто транспозицией.
Построения кода Грея для перестановок
Чтобы построить код Грея для перестановки длиной $n$, будем использовать код Грея для перестановки длиной $n - 1$. Для $n = 1$ код Грея выглядит так:
{ $1$ } — $n!$ различных перестановок, отличных друг от друга в одной транспозиции (очевидно).
Будем строить код Грея для перестановок длины $n = k$. Предположим, что нам известен код Грея для перестановок длиной $n = k - 1$. Возьмем первую перестановку из известного нам кода. Пусть она выглядит так:
{$a_{1}, a_{2}, a_{3}, ..., a_{k-1}$} ,где $a_{i}$ при $i = 1, 2, 3, ..., k$ — элементы перестановки.
Элемент $a_{k}$ запишем в начало этой перестановки:
{$a_{k}, a_{1}, a_{2}, a_{3}, ..., a_{k - 1}$}
Будем "двигать" этот элемент $a_{k}$ влево, меняя его с соседним:
{$a_{k}, a_{1}, a_{2}, a_{3}, ..., a_{k - 1}$} (1)
{$a_{1}, a_{k}, a_{2}, a_{3}, ..., a_{k - 1}$} (2)
{$a_{1}, a_{2}, a_{k}, a_{3}, ..., a_{k - 1}$}
{$a_{1}, a_{2}, a_{3}, a_{k}, ..., a_{k - 1}$}
$..........................$
{$a_{1}, a_{2}, a_{3}, ..., a_{k}, a_{k - 1}$}
{$a_{1}, a_{2}, a_{3}, ..., a_{k - 1}, a_{k}$} (3)
Получим $k$ различных перестановок, отличающихся в одной транспозиции. Возьмем следующую строку из кода Грея для перестановок длиной $n = k - 1$, которая будет выглядеть так (т.к. мы получили, что элемент стоящий на первом месте в перестановке будет "двигаться" вправо см. (1), (2), то и во второй перестановке первый элемент "поменяется" со вторым):
{$a_{2}, a_{1}, a_{3}, ..., a_{k - 1}$}
Элемент $a_{k}$ записываем в конец и начинаем "двигать" влево, меняя его с правостоящим:
{$a_{2}, a_{1}, a_{3}, ..., a_{k - 1}, a_{k}$} (4)
{$a_{2}, a_{1}, a_{3}, ..., a_{k}, a_{k - 1}$}
$..........................$
{$a_{2}, a_{1}, a_{3}, a_{k}, ..., a_{k - 1}$}
{$a_{2}, a_{1}, a_{k}, a_{3}, ..., a_{k - 1}$}
{$a_{2}, a_{k}, a_{1}, a_{3}, ..., a_{k - 1}$}
{$a_{k}, a_{2}, a_{1}, a_{3}, ..., a_{k - 1}$}
Опять получили $k$ различных перестановок, отличающихся в одной транспозиции. Далее берем третью строку из кода Грея для перестановок длиной $n = k - 1$, записываем в ее начало элемент $a_{k}$ и двигаем его вправо, как для первой перестановки и т.д.
Для каждой перестановки длиной $n = k - 1$ (всего их $(k - 1)!$) мы получили $k$ новых перестановок. Итого $k\cdot(k - 1)! = k!$ перестановок. Все они различны, т.к. для любых двух перестановок из нового кода Грея элемент $a_{k}$ стоит на разных позициях,а если $a_{k}$ стоит на одной и той же позиции, то эти перестановки образованы от разных перестановок длиной $n = k - 1$ (см. (3), (4)). Так же все соседние перестановки отличаются ровно в одной транспозиции (образованные от одной перестановки различны благодаря построению, от разных перестановок — имеют $a_{k}$ на одной и той же позиции, но отличаются в одной транспозиции, т.к. является перестановками в коде Грея для перестановок длиной $n = k - 1$, см (3), (4)). Таким образом мы получили $k!$ различных перестановок длиной $k$, отличающихся в одной транспозиции. Алгоритм для построения кодов Грея для перестановок длиной $n$ получен.
Сведение задачи построение кода Грея для перестановок к графам
Последовательность перестановок, полученная с помощью данного алгоритма имеет интересную интерпретацию. Так, если рассмотреть граф, вершины которого соответствуют всем перестановкам и в котором две вершины, соответствующие перестановкам
и , соединены ребром, если образуется из однократной транспозицией соседних элементов, то полученная последовательность является гамильтоновым путем в этом графе.См. также
Литература
Романовский, И.В. Дискретный Анализ - Санкт-Петербург 2003 стр. 39-41 <\wikitex>