Счетчиковые машины, эквивалентность двухсчетчиковой машины МТ

Материал из Викиконспекты
Перейти к: навигация, поиск
Определение:
[math]k[/math]-счётчиковой машиной называется набор [math]A=\langle\Sigma, Q, s\in Q, T \subset Q, \delta : Q \times \Sigma \cup \{\varepsilon\} \times \{0,1\}^k \rightarrow Q \times \{ -1, 0, 1\}^k \rangle[/math], где
  • [math]\Sigma[/math] — входной алфавит на ленте;
  • [math]Q[/math] — множество состояний автомата;
  • [math]s[/math] — стартовое состояние автомата;
  • [math]T[/math] — множество допускающих состояний автомата;
  • [math]\delta[/math] — функция переходов, зависящая от символа на ленте, текущего состояния управляющего автомата и состояния счётчиков и осуществляющая переход в автомата в новое состояние и изменение состояния счётчиков.

Для каждого счётчика возможны четыре операции: увеличить на один, уменьшить на один, не изменять значение, проверить является ли значение счетчика нулём.

Будем считать, что значение нулевых счётчиков уменьшать нельзя.

По сути, [math]k[/math]-счётчиковая машина является [math]k[/math]-стековой машиной с односимвольным алфавитом.

Эквивалентность двухсчетчиковой машины машине Тьюринга

Лемма:
Язык [math]L[/math] допускается машиной Тьюринга тогда и только тогда, когда он допускается трехсчётчиковой машиной.
Доказательство:
[math]\triangleright[/math]

Так как двухстековая машина эквивалентна машине Тьюринга, то достаточно показать, что трехсчётчиковая машина эквивалентна по вычислительной мощности двухстековой машине. Пусть стековая машина имеет стековый алфавит [math]\Pi[/math]. Тогда любое из состояний стеков можно считать числом в системе счисления с основанием [math]|\Pi|[/math]. Пусть первому стеку соответствует число на первом счётчике трехсчётчиковой машины, второму стеку — второе, а третий счётчик используется для временных вычислений. Тогда операции со стеком можно реализовать на трехсчётчиковой машине:

  • добавление символа в стек: умножить значение счётчика на [math]|\Pi|[/math] и прибавить число, соответствующее символу алфавита (цифре);
  • удаление символа из стека: целочисленно разделить значение счётчика на [math]|\Pi|[/math];
  • проверить верхний символ стека: найти остаток от деления значения счётчика на [math]|\Pi|[/math].

Все эти элементарные операции очевидно реализуются при помощи третьего счётчика. Например, рассмотрим операцию добавления символа в стек. Напишем программу для трехсчётчиковой машины, реализующую эту операцию.

 while (первый счётчик не ноль)
 {
    for (i = 0; i < [math]|\Pi|[/math]; ++i)
      увеличить третий счётчик;
    уменьшить первый счётчик;
 }
 for (i = 0; i < номер добавляемого символа в алфавите; ++i)
   увеличить третий счётчик;
 while (третий счётчик не ноль)
 {
    уменьшить третий счётчик;
    увеличить первый счётчик;
 }

По данной программе легко восстановить управляющий автомат счётчиковой машины, поскольку выполнение подпрограммы в псевдокоде зависит только от констант и значений счетчиков.

Аналогично реализуются остальные стековые операции. Таким образом получили, что для любой операции с двухстековой машиной существует эквивалентная операция с трехсчётчиковой машиной. Так как стековый алфавит конечен, то и управляющий автомат эквивалентной трехсчётчиковой машины будет иметь конечное число состояний. То есть для любой двухстековой машины существует эквивалентная ей трехсчётчиковая.
[math]\triangleleft[/math]
Лемма:
Для любого [math]k[/math] и для любой [math]k[/math]-счётчиковой машины существует эквивалентная ей двухсчётчиковая машина.
Доказательство:
[math]\triangleright[/math]
Пусть [math]C_1, C_2, ..., C_k[/math] — значения счётчиков [math]k[/math]-счётчиковой машины. Тогда состояние [math]k[/math]-счётчиковой машины можно охарактеризовать одним числом [math]2^{C_1}*3^{C_2}*...*p_k^{C_k}[/math], где [math]p_k[/math][math]k[/math]-е простое число. Тогда любое состояние k-счётчиковой машины можно хранить на одном счётчике, а операции увеличения значения счетчика, уменьшения значения счетчика и проверки является ли счетчик нулём осуществляются на двухсчётчиковой машине при помощи операций умножения, деления и нахождения остатка от деления на соответствующее номеру счётчика простое число. Для этих вычислений и будет использоваться второй счётчик. Таким образом, для любого [math]k[/math] и для любой [math]k[/math]-счётчиковой машины существует эквивалентная ей двухсчётчиковая машина.
[math]\triangleleft[/math]
Теорема:
Для любого перечислимого языка [math]L[/math] существует двухсчётчиковая машина, которая распознает этот язык.
Доказательство:
[math]\triangleright[/math]
Утверждение теоремы очевидно следует из двух описанных выше лемм, тезиса Тьюринга-Черча и эквивалентности двухстековой машины машине Тьюринга.
[math]\triangleleft[/math]

Источники

  • Хопкрофт Д., Мотвани Р., Ульман Д.Введение в теорию автоматов, языков и вычислений, 2-е изд. : Пер. с англ. — Москва, Издательский дом «Вильямс», 2002. — 528 с. : ISBN 5-8459-0261-4 (рус.)