<< >>
Определение: |
Внешняя мера на множестве [math] X [/math] - неотрицательная функция, заданная на множестве всех подмножеств [math] X [/math], и удовлетворяющая следующим аксиомам:
1) [math] \mu^* (\varnothing) = 0 [/math]
2) Для [math] A \subset \bigcup\limits_n A_n [/math] выполняется [math] \mu^*(A) \le \sum\limits_{n} \mu^*(A_n) [/math] (сигма-полуаддитивность) |
Из свойства 2) следует, что для [math] A \subset B \quad \mu^*(A) \le \mu^*(B) [/math] — монотонность внешней меры.
Сейчас мы произведем важное построение, которое, имея меру на полукольце, позволяет строить внешнюю меру(такая внешняя мера называется порожденной).
Пусть заданы полукольцо [math] (X; \mathcal R) [/math] и мера [math] m [/math] на нем. Тогда для любого множества [math] A \subset X [/math]:
1) Полагаем [math] \mu^*(A) = + \infty [/math], если [math] A [/math] нельзя покрыть не более чем счетным количеством множеств из полукольца.
2) Полагаем [math] \mu^*(A) = \inf\limits_{A \subset \bigcup\limits_{n} E_n} \sum\limits_{n} m(E_n) [/math], в противном случае, то есть внешняя мера является нижней гранью множества мер для всех возможных покрытий [math] A [/math] из полукольца [math] \mathcal R [/math].
Теорема: |
Определенная нами [math] \mu^* [/math] является корректной внешней мерой на [math] X [/math], при этом, для [math] A \in \mathcal R, \mu^*(A) = m(A) [/math]. |
Доказательство: |
[math]\triangleright[/math] |
Проверим аксиомы внешней меры:
1) [math] \varnothing \in \mathcal R [/math] по аксиомам полукольца, [math] m(\varnothing) = 0 [/math] по аксиомам меры. [math] \varnothing \subset \varnothing [/math], то есть [math] \varnothing [/math] является наименьшим покрытием [math] \varnothing [/math], и [math] \mu^*(\varnothing) = 0 [/math].
2) Пусть [math] A \subset \bigcup\limits_n A_n, A, A_n \subset X [/math].
Возможны различные варианты:
а) Хотя бы одно из множеств [math] A_n [/math] не покрывается элементами полукольца(пусть [math] A_{n_0} [/math]). Тогда [math] \mu^*(A_{n_0}) = + \infty [/math], и требуемое неравенство всегда верно и ужасно тривиально.
б) Все [math] A_n [/math] покрываются элементами полукольца. Тогда для любого [math] n\ \mu^*(A_n) = \inf\limits_{A_n \subset \bigcup\limits_{p} E_{n_p}} \sum\limits_{p} m(E_{n_p}) [/math], где все [math] E_{n_p} [/math] принадлежат полукольцу.
Если внешняя мера хотя бы одного из множеств [math] A_n [/math] равна [math] + \infty [/math], то неравенство опять всегда верно.
В противном случае, по определению нижней грани, для [math] \frac{\varepsilon}{2^n} [/math] подбираем покрытие [math] A_n \subset \bigcup\limits_{p} E_{n_p} [/math] так, чтобы [math] \sum\limits_{p} m(E_{n_p}) \lt \mu^*(A_n) + \frac{\varepsilon}{2^n} [/math].
[math] A \subset \bigcup\limits_{n} A_n \subset \bigcup\limits_{n}\bigcup\limits_{p} E_{n_p} [/math]
, значит,
[math] \mu^*(A) \le \sum\limits_{n}(\sum\limits_{p} m(E_{n_p})) \le [/math] (используя предыдущее неравенство)
[math] \le \sum\limits_{n} (\mu^*(A_n) + \frac{\varepsilon}{2^n}) = \sum\limits_{n} \mu^*(A_n) + \varepsilon \sum\limits_{n} \frac{1}{2^n} \le \sum\limits_{n} \mu^*(A_n) + \varepsilon [/math].
Итак, [math] \mu^*(A) \le \sum\limits_{n} \mu^*(A_n) + \varepsilon [/math], что при [math] \varepsilon \rightarrow 0 [/math] дает нам нужный результат. |
[math]\triangleleft[/math] |
Итог: [math] (X, \mathcal R, m) \rightarrow (X, \mu^*) [/math], где [math] \mu^*|_{\mathcal R} = m [/math]
<< >>