Теорема о компактности сопряжённого оператора
Версия от 21:35, 20 июня 2010; Ulyantsev (обсуждение | вклад)
Пусть
является компактным оператором. Тогда сопряженный к нему оператор также является компактным.Доказательство теоремы
Итак, рассмотрим оператор
. По определению сопряженного оператора, если , то .Для доказательства необходимо показать, что множество
будет относительно компактно в . Для этого надо показать, что если взята последовательность такая, что , то можно выбрать такую, что сходится в .