Материал из Викиконспекты
Цепные дроби позволяют находить рациональные приближения вещественных чисел. Если действительное иррациональное число [math]\alpha[/math] разложить в цепную дробь, то точность n-ой подходящей дроби будет соответствовать следующему неравенству:
[math]|\alpha-\frac{P_i}{Q_i}| \lt \frac{1}{Q_i \cdot Q_{i+1}} \lt \frac{1}{Q_i^2}[/math].
Теорема (1): |
Для любого иррационального числа [math]\alpha[/math] существует бесконечное число дробей [math]\frac{P}{Q}[/math] таких, что [math]~|\alpha-\frac{P}{Q}|\lt \frac{1}{2Q^2}[/math]. |
Доказательство: |
[math]\triangleright[/math] |
Рассмотрим две последующие подходящие дроби к [math]\alpha : \frac{P_k}{Q_k}[/math] и [math] \frac{P_{k+1}}{Q_{k+1}}[/math]. Пусть ни одна из них не удовлетворяет условию теоремы. Тогда имеем: [math]|\alpha-\frac{P_k}{Q_k}|\geqslant\frac{1}{2Q_k^2}, |\alpha-\frac{P_{k+1}}{Q_{k+1}}|\geqslant\frac{1}{2Q_{k+1}^2}[/math]. Отсюда [math]|\alpha-\frac{P_k}{Q_k}|+|\alpha-\frac{P_{k+1}}{Q_{k+1}}|\geqslant\frac{1}{2Q_k^2}+\frac{1}{2Q_{k+1}^2}[/math].
Но поскольку [math]\alpha[/math] лежит между [math]\frac{P_k}{Q_k}[/math] и [math]\frac{P_{k+1}}{Q_{k+1}}[/math], то [math]|\alpha-\frac{P_k}{Q_k}|+|\alpha-\frac{P_{k+1}}{Q_{k+1}}| = |\frac{P_k}{Q_k}-\frac{P_{k+1}}{Q_{k+1}}| = \frac{1}{Q_k Q_{k+1}}[/math], вследствие чего [math]\frac{1}{2Q_k^2}+\frac{1}{2Q_{k+1}^2}\leqslant\frac{1}{Q_k Q_{k+1}}[/math]. Следовательно [math](\frac{1}{Q_k}-\frac{1}{Q_{k+1}})^2 \leqslant 0[/math], что невозможно. Мы пришли к противоречию. Поэтому, по крайней мере для одной из двух подходящих дробей выполнено условие теоремы. Придавая различные значения [math]k[/math], получим бесконечное множество дробей, удовлетворяющих условию теоремы. |
[math]\triangleleft[/math] |
Теорема: |
Для любого иррационального числа [math]\alpha[/math] существует бесконечное число дробей [math]\frac{P}{Q}[/math] таких, что [math]~|\alpha-\frac{P}{Q}|\lt \frac{1}{\sqrt{5}Q^2}[/math] |
Доказательство: |
[math]\triangleright[/math] |
Рассмотрим три последующие подходящие дроби к [math]\alpha : \frac{P_k}{Q_k}, \frac{P_{k+1}}{Q_{k+1}} [/math] и [math] \frac{P_{k+2}}{Q_{k+2}}[/math]. Пусть ни одна из них не удовлетворяет условию теоремы. Тогда имеем: [math]~|\alpha-\frac{P_k}{Q_k}|\geqslant\frac{1}{\sqrt{5}Q_k^2}, ~|\alpha-\frac{P_{k+1}}{Q_{k+1}}|\geqslant\frac{1}{\sqrt{5}Q_{k+1}^2}, ~|\alpha-\frac{P_{k+2}}{Q_{k+2}}|\geqslant\frac{1}{\sqrt{5}Q_{k+2}^2}[/math].
Так как [math]\frac{P_k}{Q_k}[/math] и [math]\frac{P_{k+1}}{Q_{k+1}}[/math] расположены по разные стороны от [math]\alpha[/math], то при нечётном [math]k[/math] имеем [math]\frac{P_k}{Q_k}+\frac{1}{\sqrt{5}Q_k^2}\leqslant\alpha\leqslant\frac{P_{k+1}}{Q_{k+1}}-\frac{1}{\sqrt{5}Q_{k+1}^2} [/math], а при чётном [math] k [/math] - [math]\frac{P_{k+1}}{Q_{k+1}}+\frac{1}{\sqrt{5}Q_{k+1}^2}\leqslant\alpha\leqslant\frac{P_k}{Q_k}-\frac{1}{\sqrt{5}Q_k^2}[/math].
Из последних двух неравенств следует, что [math]\frac{1}{\sqrt{5}}(\frac{1}{Q_k^2}+\frac{1}{Q_{k+1}^2})\leqslant~|\frac{P_k}{Q_k}-\frac{P_{k+1}}{Q_{k+1}}| = \frac{1}{Q_k Q_{k+1}}[/math]. Умножив обе части на [math]Q_{k+1}^2[/math] и перенеся все члены в левую часть получим: [math](\frac{Q_{k+1}}{Q_k})^2 - \sqrt{5}(\frac{Q_{k+1}}{Q_k}) + 1 \leqslant 0[/math]. То есть [math](\frac{Q_{k+1}}{Q_k}-\frac{\sqrt{5}}{2})^2 \leqslant \frac{1}{4}[/math], следовательно для целых [math]Q_k[/math] и [math]Q_{k+1}[/math] имеем [math]\frac{Q_{k+1}}{Q_k} \lt \frac{1+\sqrt{5}}{2}[/math].
Так как [math]\frac{P_{k+1}}{Q_{k+1}}[/math] и [math]\frac{P_{k+2}}{Q_{k+2}}[/math] расположены по разные стороны от [math]\alpha[/math], то аналогично получаем [math]\frac{Q_{k+2}}{Q_{k+1}} \lt \frac{1+\sqrt{5}}{2}[/math].
Пользуясь рекуррентным соотношением получаем [math]\frac{1+\sqrt{5}}{2} \gt \frac{Q_{k+2}}{Q_{k+1}} = \frac{Q_{k+1}a_{k+1}+Q_k}{Q_{k+1}} = a_{k+1} + \frac{Q_k}{Q_{k+1}} \gt 1 + \frac{2}{1+\sqrt{5}} = \frac{1+\sqrt{5}}{2}[/math]. Пришли к противоречию. Значит для одной из трёх последовательных подходящих дробей будет выполняться условие теоремы. Тогда придавая различные значения [math]k[/math] получим бесконечно много дробей, для которых выполняется условие теоремы. |
[math]\triangleleft[/math] |
Лемма: |
Любую конечную цепную дробь [math]\lt a_0, a_1, a_2,\cdots, a_n\gt [/math] с чётным(нечётным) числом подходящих дробей можно представить в виде эквивалентной конечной цепной дроби с нечётным(чётным) числом подходящих дробей. |
Доказательство: |
[math]\triangleright[/math] |
Если [math]a_n \geqslant 2[/math] : [math]\lt a_0, a_1, a_2,\cdots,a_n\gt = \lt a_0, a_1, a_2,\cdots,a_n-1,1\gt [/math]. Если [math]a_n = 1[/math] : [math]\lt a_0, a_1, a_2,\cdots,a_{n-1}, 1\gt = \lt a_0, a_1, a_2,\cdots,a_{n-1} + 1\gt [/math]. |
[math]\triangleleft[/math] |
Лемма: |
Если [math]x = \frac{P\zeta+R}{Q\zeta+S}[/math], где [math]\zeta \gt 1, P, Q, R, S[/math] удовлетворяют [math]Q\gt S\gt 0[/math] и [math]PS-QR= +- 1[/math], то [math]\frac{R}{S}, \frac{P}{Q} [/math] - n-1-ая и n-ая подходящие дроби для [math]x[/math]. |
Доказательство: |
[math]\triangleright[/math] |
Разложим [math]\frac{P}{Q}[/math] в цепную дробь[math]\lt a_0, a_1, a_2, \dots, a_n\gt = \frac{P_n}{Q_n}[/math].
По лемме 1 мы можем задать чётное либо нечётное [math]n : PS-QR=(-1)^{n-1}[/math]
[math]P_nS-Q_nR=(-1)^{n-1}=P_nQ_{n-1}-P_{n-1}Q_n[/math] [math]P_n(S-Q_{n-1})=Q_n(R-P_{n-1})[/math] |
[math]\triangleleft[/math] |
Теорема 3
Если некоторая дробь [math]\frac{P}{Q}[/math] удовлетворяет условию [math]~|\alpha - \frac{P}{Q}|\lt \frac{1}{2Q^2}[/math], то она - подходящая дробь для [math] \alpha [/math].
Доказательство